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ABSTRACT

This study provides a comparison of alternative means for high data
rate communication (about 10° b/s) from deep space probes, and
indicates the extent to which orbiting spacecraft can aid deep space
navigation. Emphasis is on the communication problem. A special
effort has been made to delineate practical and theoretical constraints
on communication from a2 disiance of 1 to 10 AU at microwave,
millimeter, and optical frequencies (1 to 100 GHz and 20 to 0.2
microns wavelength), and to indicate promising avenues for extending
the art.

The interrelationship between fundamental theory, device charac-
teristics, and system performance has received particular attention in
this study. Specific missions have been synthesized, and problems of
visibility, Doppler variation, handover, acquisition. tracking, and
synchronization have been investigated in order to discover the
limitations imposed by practical system considerations.

This study was initiated and directed by Ira Jacobs.
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CHAPTER 5. SYSTEM COMPARISONS

1. CANONIC MISSION — MARS ORBITER

In this section, a series of topics are considered which
dictate how certain choices of orbital parameters affect
orbital properties important to communication. The results
are summarized here, with the details given in Appendix 10.

1.1 Fraction of Time ¢ Mars Orbiter Is Occulted by the
Planet

Under saitable simplifying assumptions, such as a
cylindrical shadow, one can produce graphs of occultation
fraction (defined as the fraction of an orbiter period for
which Mars occults the orbiter) which are valid for at least
several orbiter periods. These graphs demonstrate qualita-
tively the effects of varying the orbiter parameters and thus
may be useful in preliminary mission design.

1.2 Fraction of Time Mars Is Within the Beam of the Eacth
Transmitter

This fraction is equal to the occultation fraction plus a
small correction which is proportional to the distance
subtended by the antenn: beam at Mars and inversely
proportional to the orbital radius of the orbiter.

1.3 Magnitude and Variation of Doppler Shift

The Doppler frequency shift is approximately periodic
with a period of 2 years. The maximum fractional shift of
2.0 X 107* (which must be multiplied by the frequency to
obtain the actual shift) occurs about 1-1/2 months after
Earth-Mars opposition.

1.4 Visibility Conditions from a Tracker Satellite Situated
at a Triangular Libration Point

An upper bound on the occultation fraction of 0.006 is
obtained by neglocting the inclinations of the Mars orbit

plane and the moon orbit plane to the ecliptic. This
fraction represents only a few hours per month, which is
negligible unless occultation occure at times when contin-
uous communication is necessary. This can be avoided by
proper scheduling or redundant trackers.

1.5 Visivility Periods of a mars Orbiter Relative to a Space
Probe Approaching from Earth

Even for relatively small probe-Mars distances (as small
as 0.01 AU), simple graphical iesults as in Section 1.1 can
be used directly (and for ev:n smaller distances they can be
used with slight modific: tions) for preliminary mission
design. A simple occultation criterion based upon the
assumption of a conic.’ shadow (and thus valid for any
probe-Mars distance) is also given.

1.6 Payload Considerations for a Mars Mission

Several of the classes of possible missions are described,
and references to some of the extensive recent literature are
provided, in Appendix 10.

1.7 Visibility Conditions Between a Mars Landing Vehicle
and a Mars Orbiter

This situation is similar to ne one discussed in Section
1.5 except that an even simpler critc:ion for occultation
can be given once the landing vehicle is on the Martian
surface.

1.8 Visibility of a Mars Synchronous Saiellite from am
Earth Synchronous Satellite

It is demonstratsd that there are periods of two of
three months, two or three times per year when continuous
communication s possible.




2. COMPARISON OF MICROWAVE SYSTEMS

2.1 Space Vehicle ERP

Over the past decade more than five crders of
magnitude improvement in deep-spacc communication
capability® has been achieved. This is illustrated in Table
S0, where sysizim parameters are given for Fioneer 1V
(1959), Marir~r II (196€2), Mariner IV (1965), and Voyager
(1973).) The last cclumn of this table gives the perform-
ance relative to Mariner IV. The 51.4-dB imp:ovement in
capability of Mariner IV relative to Pioneer IV was achieved
by a 15.7dB increase in spacecraft transmitter power, a
21 5B increase in spacecraft antenna gain (facilitated by
an increase in system frequency from %60 MKz to 2290
MHz), and a 14.2-dB reduction in receiver noise occasioned
by the introduction of a maser amplifier. For Voyager, a
further 26.4-dB improvement is planned, consisting of 7-dB
increased transmitter pcwer, 8-¢B increased antenna gain,
8dB increased receiver aperture, and 2.4-dB reduced
system noise temperature.

it is pertinent . inquire into what further improve-
meiis might realistically be expected in the 2290-MHz
DSIF system in the 1980 time period. Further significant
improvements in receiver aperture (see Section 2.2) or noise
temperature are not anticipated. The improvements then
will come iargely from increased space vehicle effe. ive
radicted power.

In Figure 115, contours of constant ERP are shown on
a plot of transmitter power (in dBW) versus antenna gain
(in dB). The transmitter power and antenna gain of the four
systems compared in Table 50 are shown by dots on this
figure. The dashed straight line drawn through the three
uppermos. points indicates that, although power and
antenna gzin are both increasing to achieve incieased ERP,
gi:;ﬂhaeaing somewhat more rapidly than power; viz.,

Although there are genenlly constraints which limit
the choice of power (availability of space-qualified tubes
and heat-dissipation considerations) and antenna size
(shroud dimensions and pointing considerations), it is still
of interest to determine the relation between power and
. gain to achieve a given ERP with minimum weight. The

weight required to achieve a given radiated power in the
vicinity of Mars (assuming solar cell prime power) is silown
in Figure 116, and the correspor.iing weight for a deep-
space mission using riuclear primary power is shovn in
Figure 117. Although tube weight increases as P' ? . the
principal contribution to the weight is made by the primary
power source, and this weight increases linearly with P.
Consequently, the weight ¥p required to achieve a given
radiated power P is given by

Wp=W, +w P )

where W, is a fixed weight, and w,, (in pounds per watt) is
the incremental weight associated with an increase in
power. Assuming solar cell prime power at 1.7 AU from the
sun and an overall efficiency of 40 percent, w,770.6 pounds
per watt of radiated power.

The relation between weight and antenna gain (or
antenna diameter) cannct be fit by a simple functional
relation. This is illustrated in Figure 118 where the results
of Chapter 1, Seciion 3 are used 1o plot spacecraft antenn
weight gain for space ciaft antennas at 2.3 GHz and 8 GHz.
The weight is shown as a function of diameter in Figure
119; the weight is essentially independent of frequency for
diameters below 5 meters, but as the diameter is increased
the weight increases more rapidly for the higher frequency.

If attention is restricied to a limited region of the
curves, the curves in Figures 118 and 119 may be
approximated (albeit not too well) by straight lines. This is
flustrated by the dashed line in Figure 118 which indicate
that, at 2.3 GHz, the weight of the spacecraft antenna
increates as G%% (or D'-2). Tie fact that the weight
increases mors siowly than the antenna area is indicative of
the fact that most of thc weight resides in the supporting
structure rather than in the dish itself.

If antenna weight is assumed to be given by

W, =W, G** )
it follows that the combined weight of antenna and power
is given by

W=W, +Wp=W,G** + W, +w P .3

For a fixed ERP = PG, the optimum choice of P and G to
minimize W is given by

S
r-(——?"“"’ ' n @
csé?‘;,- ' @™ ®

and the optimum weight is given by
s/8 38 3/
Woin*W; +19W,  wp ! (ERP) ©

' The sbove results indicato that as ERP increascs the
weight of the spacecraft commmnications increases as

!
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(ERP)* ®_ Thus, to go from a SO-dBW ERP (Voyager) to 70
dBW would require an increase in weight by a factor of
about 6.

The above results also indicate that, as ERP increases,
the “optimum’ design has gain increasing more rapidly
than power: specifically, G~P5/3. The empirical data in
Figure 115 indicated that G~P8/7. However, as experience
is gained with large lightweight space erectable antennas,
the higher exponent found above may be more appropriate.

The optimum power and antenna gain, as obtained
from Equations (4) and (5), is shown by the dark lines in
Figure 115 for the cases of

1. Solar cells in the vicinity of the Earth (1 AU)

2. Solar celis 1n the vicinity of Mars (1.7 AU)

3. Reactor prime power.

As the weight of prime power (wp) increases, the optimum
design to achieve a given ERP uses relatively less pow:r
(P~wp5/8) and more gain (G~wp5/8). The weight factor,
Wp» for a reactor is about 4 times that of solar cells in the
vicinity of Earth. Thus reactors will require less weight than
solar cells for missions extending beyond 2 AU from the
Sun.

It is interesting to note from Figure 115 that the
Voyager parameters correspond to a minimum-weight
design although, because of the approximate nature of the
models, the correspondence is probably only fortuitous.

In Figure 120, the weight required to achieve a given
ERP is shown for the three cases noted above, assuming the
minimum weight design. Th. weight includes antenna,
prime power, power supply, and transmitting tube.

2.2 Communication Performance at 2.3 GHz

The information rate achievable in a deep-space com-
munication system is given by
PGA

He ——
4aR? KT(E/N,) 0

where P = the transmitter power
G = the gain of the transmitting antenna
A = the effective area of the receiving antenna
R = the range
k = Boltzmann’s constant (k =
joule/°K)
T = the system noise temperature
E/N, = the ratio of energy-per-bit to noise spectral

density required to achieve a desired error
probability (see Chapter 1, Section 6).

It was noted in Chapter 1, Section 6 that the best
coherent binary communication system (phase shift keying)
requires E/Ng = 10dB to achieve an error probabilicy of

1.38(10y23

10°%, but by the use of larger alphabet modulaticn and/or
coding systems, a 5-dB reduction can be achievea. For the
purpose of the performance calculations in this chapter,
E/N, = 10 dB will still be used to allow both for losses in
the transmitter and receiver and for some margin. The
intent is to provide a basis of comparison for systzms
operating in the various frequency bands, rather thai to
make a precise evaluation of the information rate ai each
frequency.

In Figure 121, information rate is plotted as a function
of range for ERP = 50, 60, 70, 80 dBW, assuming DSIF
receiving parameters [A=2.25(10)*m?,T =25°K]. To
achieve an information rate of 10°® bits per second from 1
AU requires an ERP of 57 dBW. This could be achieved, for
example, with .ne same S50-watt {17 dBW) tube as in
Voyager and a 5.8-meter (19-foot) antenna which appears
well within the state of art. To achieve 10° bits per second
from 10 AU would require an ERP of 77 dBW which could
be achieved (see Figure 120) with a 500-watt transmitter
(27 dBW), and an 18.2-meter (60-foot) antenna. In Figure
118 this antenna is ¢stimated to weigh 600 pournds. In
Figure 121 the weight of power plus antenna is estimated at
1000 pounds. Thus, it would appear that present micro-
wave technolegy is sufficient to achieve 1 Mb/s from a
distance of ! AU, and that the achievement of 1 Mb/s from
a distance of 10 AU is consistent with reasonable estimates
of future space transmitters and antennas.

2.3 Effect of Increasing Frequency

Frequency does not appear explicitly in Equation (7),
but it appears implicitly in the factors P, G, A, and T. As
noted in Chapter 1, Section 2, although for a particular
tube design P scales as 1/f2, in practice radiated power will
be limited by prime power and heat dissipation considera-
tions. Thus, it is reasonable to assume that transmitter
power is independent of frequency over the microwave
region.

Under cloud cover and light rain conditions, the sky
temperature at 8 GHz is about 10°K for a 30-degree
elevation angle (see Figure 39). If the receiver is sited in a
location where heavy rain is improbable, it may be assumed
that there is essentially no noise penalty in increasing the
frequency from S to X band.

Thus, the effect of increasing the frequency within the
microwave band is determined by the frequency depend-
ence of G and A. In Figure 122 the gain of a spacecraft
antenna of fixed weight is shown as a function of frequency
(see Chapter 1, Section 3). For a 200-b space vehicle
antenna, gain -increases as f'‘S. Note that the relative
advantage of increasing frequency is greater when one is
constrained to a low weight than when one is allowed a
large weight. This is readily understood since low weight
constrains one to small antennas.




2
4e _w..
5
1.8 =2
- <
=
5
3
42 m
o
8
2%
e
]

(87) LHOBM




T

| W W W T

L1yt

nY

i

w0® -
. .
[4) -
8 -
- ’
e 4
i 4
g -
H
; -
' |
Sl | =
- —
= a—
- | .
o ' -
¢ 10t l -
l -4
. l B
P
: |
‘ I
IO‘ ' 1 | llllll 1 ng;llllll 1 1 LA 11l
Id' .olz .°|3

RANGE (METERS)

Figure 121, Information rate achievable with DSIF

10




GAIN (dB)

70

60 -

50 -

40 |-

30 1 1 i | [ S B | 1 1 1 2
' 2 ) 10 20 S0

FREQUENCY (GH2)

Figure 122. Frequency dependence of space vehicle antenna gain for fixed weight

70




In the case of the receiving antenna, cost raiher than
weight i5 the appropriate parameter to be fixed as fre-
quency is varied. The antenna cost model, developed in
Chapter 1 Section S5, was used to compute gain versus
diameter ¢ urves for fixed cost. These are shown in Figures
123 throu zh 126 for costs of §1, $5, 510, and $20 million.
For a fix :d cost and frequency there is a diameter which
achieves ‘naximum gain. Above this diamzeter a gain-limited
antenna :annot be achieved with the given cost. Below this
diamete -, although the antenna is gain-imited, gain falls off
as dian eter decreases.

Ir Figure 127 the maximum gain (obtained from
Figu es 123 to 126) is shown as a function of frequency for
fixerd cost. The results are fit quite well by two sets of
st-aight lines:

1. For 8 GHz and below, G ~ f! ¢, Consequently,

A~ f‘0.4.
2. For 16 GHz and above, G ~ f'-'. Consequently,
A~f09,
The fact that effective area decreases more rapidly at the
higher frequencies is a consequance of manufacturing
tolerances limiting antenna sizes at these frequencies.

Thus, in going from 2 to 8 GHz, with a 200b
spacecraft antenna, the gain may be increased from 42 to 52
dB (Figure 122). For a $10 million ground antenna, the
receiving gain may be increased from 60 to 70 dB (Figure
127) which corresponds to a 2-dB loss in effective area.
Thus the GA product is increased by 8 dB, and, therefore,
an X-band system is expected to have a factor 6 more
information rate capability that an S-band system with
corresponding spacecraft weight and ground terminal cost.

Continuing with the above example, if the frequency is
increased to 16 GHz, the spacecraft antenna gain may be
increased an additional 5 dB to 57 dB, but the ground
antenna gain (Figure 127) may be increased only to 74 dB
which corresponds to a 2-dB loss in effective area relative to
the X-band case. Thus, the GA product is increased an
additional 3 dB. However, at 16 GHz, the additional sky
noise (under cloud and light rain conditions T, ~ 25°K)
should more than negate the advantage of improved GA
product.

3. COMPARISON OF MILLIMETER SYSTEMS

The spacecraft antenna weight and ground antenna
cost data (Figures 122 and 127) presented in the previous
section cover the frequency range from 1 to 100 GHz, and
hence include the two “atmospheric windows” at 35 and
94 GHz. The above results have been combined to give the
product of transmitting antenna gain and receiving antenna
effective area as a function of frequency for fixed trans-
mitting antenna weight and ground receiving antenna cost.
The results are shown in Figure 128 where the curves are
labelled by the spacecraft antenna weight and the ground
terminal cost.
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If transmitter power and receiver power were indepen-
dent of frequency and there were no atmospheric attenua-
tion, then the ordinate of the above curve would be
proportional to communication rate. These assumptions are
valid in the microwave (1 to 8 GHz) region barring heavy
rainfall (see Chapter 1, Section 4), and hence there is an
advantage in increasing frequency to X-band as nowd i itic
previous section. It is of interest to note from Figure 128
that the relative advantage (i.e., the slope of the curves) is
greater the smaller the spacecraft weight.

In the millimeter region, the slope of the curves
diminishes appreciably because manufacturing tolerances
limit consideration to smalle - antennas. The effect is less
proncunced at the lower weights, primarily because the
lower weight already provides an antenna size constraint.

The curves in Figure 128 are monotonic increasing, so
that millimeter wavelengths would offer an advantage if
there were no frequency-dependence of transmitter power,
receiver noise, and attenuation. Unfortunately, although
the first is approximately true, neither the second nor third
assumptions are applicable in .he millimeter band.

As noted in Chapter 2, Section 1, coupled cavity TWTs
have been built with output powers in the range of several
hundred watts to several kilowatts throughout the milli-
meter band, and with efficiencies comparable to those
achieved at microwaves. Although no such tubes have as yet
been space qualified, there is little reason to expect that
this could not be done. The biggest problem, particularly
when relatively high powers are desired, is heat dissipation.
Because of the smaller dimensions this is a more serious
problem at millimeter wavelengths and consequently some
additional weight may be required for millimeter tubes
relative to microw-ve tubes. For the purpose of perform-
ance calculations here, however, it will be assumed that
power is limited by the weight of the prime power, and that
there is no frequency dependence of radiated power
throughout the microwave and millimeter region. To achieve
this result would require considerable development effort at
the millimeter wavelengths.

Although it may be assured (somewhat optimistically)
that millimeter systems will not suffer a power penalty
relative to microwave systems, there is a penalty associated
with atmospheric attenuation (see Chapter 1, Section 4 and
Chapter 2, Section 2). In Table 51 the atmospheric
propagation losses when observing at 30° elevation angle,
are given at frequencies of 2, 8, 16, 35 and 94 GHz due to
various atmospheric conditions. It is clear that millimeter
systems cannot operate through heavy rain, but by appropri-
ate siting and diversity, heavy rain may be avoided. It will be
assumed, however, that the system must be capable of
operating in the presence of light rain. In Table 52 the
attenuation under these conditions is given together with
the additional sky noise (T,ep) contributed by this
attenuation. Total system noise temperature is assumed to
be given by T,,n +25°K which assumes that low-noise

V———
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Table 51
ATMOSPHERIC PROPAGATION LOSSES (IN dBs)

2GHz 3 GHz 16 GHz 35 GHz 94 GHz
Clear atmosphere 0 0 0.2 0.5 24
Dense clouds 0 0.1 0.3 2 9
0.1 in/br rain o 0.1 0.6 3 11
1 in/hr rain 0 1.8 12 30 60
Table 52
PERFORMANCE DEGRADATIONS CAUSED BY ATMOSPHERIC LOSS
UNDER CONDITIONS OF .1 in/hr RAINFALL OR
VERY DENSE CLOUD COVER
2 GHz 8 GHz 16 GHz 35 GHz 94 GHz
Att (dB) 0 0.1 0.8 35 13.4
Tatm (°K) ) 7.2 24 130 285
T 25 32.2 49 155 310
10 log T/25 0 1.1 29 7.9 11
Degradation (dB) 0 1.2 3.7 11.4 244

maser receivers are available throughout this band (see
Chapter 2, Section 5, which indicates that the assumption is
reasonable up to 35 GHz but questionable at 94 GHz).

It is seen from Table 52 that there is an appreciable
degradation at the millimeter wavelengths associated with
the increased sky noise.

In Table 53 the results of Figure 128 and Table 52 are
combined to give the signal-to-noise ratio (and hence the
information rate) on a relative decibel scale for the
frequencies considered above and for the various com-
binations of space antenna weight and ground antenna cost
contained in Figure 128,

To convert the relative performance data in Table 53
to information rate H, it is necessary to assume that a
transmitter power P, a range R, and a performance measure
of the modulation system E/N,. For P=100 watts,
R=1AU, and E/N,=10 [H is proportional to
P/(R? E/N,)], the O dB entry in the table correponds to
2.5(10)° bits per second. Thus, for example, the use of a
100 pound space antenna and a $1 million ground antenna
would achieve an information rate of 2(10)® bits per second
at f=8GHz (assuming again P=100 watts, R=1 AU,
E/N, = 10).

18

Several interesting conclusions may be drawn from
1able 53.

1. There is an appreciable advantage (6 to 9 dB) in
going from 2 to 8 GHz.

2. The performance at 16 GHz is essentially the same
as at 8 GHz under the assumed light rain con-
ditions. Note, however, from Table 51 that there is
considerably more degradation at 16 GHz than at
8 GHz under heavy rain conditions.

3. The performance relative to that at 8 GHz
degrades appreciably at the millimeter frequencies.
Note, however, that for the lighter spacecraft
antennas, the performance at 35 GHz is better
than that at 2 GHz. This conclusion must be
tempered, however, by the extreme sensitivity to
weather conditions and the current unavailability
of space qualified millimeter tubes. It is generally
true, however, that the millimeter frequencies are
relatively more stiractive when there is a tight
constraint on spacecraft weight.




Table 53
RELATIVE SYSTEM I ERFORMANCE (dB)

Space Antenna weight (ibs) 100 100 200 500
Ground Antenna Cost 108 107 107 107
(dollars)
f= 2GHz 4 11 17
f = 8GHz 9 13 18 23
f = 16 GHz 10 15 18 22
f = 35GHz 6 11 13 16
f = 94 GHz (] 4 5 7

GA (dB ABOVE Imt)

. 50 A L FEREN SR TR T R | | i 1
] 2 s 10 20 50 :
1 toua) ‘
|
Figure 128. Frequency dependence of product of gain of fixed-weight transmitting ‘1

antenna and area of fixed-cost rec civing antenna
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4. MILLIMETER SYSTEMS WITH SATELLITE
RECEIVER

As noted n the previous section, the margins required
for atmospheric effects may make millimeter wavelengths
less attractive than S band for communication from a deep
space vehicle to an Earth receiver. It is of interest then to
consider a deep-space millimeter communication system in
which the receiving terminal is located on an Earth satellite
rather than on ground, with communication from the
satellite to the ground via S band. This, of course, permits
the use of frequencies outside the atmospheric windows for
transmission from the space vehicle to the Earth satellite.

In Figure 129 the gain and diameter of a 200-pound
spacecraft antenna (as obtained from the results of Chapter
1, Section 3) are shown as a function of frequency. At 2.3
GHz, the gain is 44 dB corresponding to an antenna
diameter of 9.1 meters (30 feet). At 100 GHz, thz gain is
70 dB corresponding to an: antenna diameter of 4.3 meters
(14 feet). For a fixed weight spacecraft antenna, the gain is
proportional to -6 which corresponds to the diameter
being proportional to f-0-*,

It is not possible to assign a simple functional relation
for the frequency dependence of transmitter power and
receiver noise temperature. For a given tube design,
transmitter power tends to scale as 1/2. On the other hand,
efficient (40 percent) extended interaction TWT's are now
being designed with output powers of the order of 100
watts (see Chapter 2, section 1). Although present powers
are at least an order of magnitude below those achievable at
S band, in the 1980 time frame the radiated power may be
determincd largely by prime power considerations and may
be essentiaily independent of frequency in the microwave
and millimeter region.

Similarly, although there are presently few masers
operating at millimeter wavelengths (see Chapter 2, Section
6), there is no inherent reason why a millimeter system
operating outside the atmosphere could not ultimately
achieve the same low-noise performance as is presently
schieved at S band. Unfortunately, however, because of at-
mospheric absorption, there has not been a strong reason to
develop cxtremely low noise millimeter receivers.

In Figure 130, the satellite receiver antenna diameter
required to achieve the same communication rate as a
64-meter (210-foot) S-band receiver is shown as a function
of frequency for two cases.

1. . Transmitter power divided by receiver noise tem-

perature is the same at millimeter wavelengths as
at S band.

2. This ratio is 10 dB poorer at the millimeter
wavelengths than at S band.
In both cases the transmitting antenna gain is assumed to be
given by [Figure 129,
Under the optimistic assumption of Case 1, a 3.2-meter
(10-foot) receiving antenna would be required at 100 GHz.

Under the more realistic assuraption of Case 2, the receiving
antenna diameter is 10.] meters. However, a 10-meter
Earth satellite antenna, good at 100 GH¢, is outside the
range of presently contemplated design.

The above results indicate tha* a millimeter system
with a satellite receiver would require extensive develop-
ment efforts in the areas of <pace transmitters, low-noise
space receivers, and ligh-g#in (70 to 80 dB) space antennas
just to equal the perforruance of an S-band system with the
present DSIF receiver. The prospects are rather remote for
obtaining periormance at millimeter wavelengths
appreciably better than S band.

S. COMPARISON OF GROUND VERSUS SATELLITE
RECEIVER FOR OPTICAL SYSTEMS

There is a serious question as to whether the receiving
site for an optical communication system should be located
on earth or on a satellste outside the Earth’s atmosphere. In
the latter case, communication from the sateiiite to the
Earth would be at S band where atmospheric effects may
be neglected. The purpose of this section is to review and
evaluate (as well as existing information allows) the
arguments for and against the use of satellite receivers.

5.1 Siting of Ground Receivers

A general-purpose deep-space receiving network
requires at least three ground terminals to assure con-
tinuous communication while the space vehicle is in view of
the earth. Optical receiving sites should be located where
atmosphenic effects are minimized. A recent study? of
siting for an Optical Communication Experimental Facility
(OCEF) has pointed out that, although siting an optical
ground terminal is similar to that of siting an astronomical
observatory, there are important differences. (See also the
discussion in Chapter 3, Sections 4.1 and 5.1.) Stated most
simply, an cbservatory is concerned with maximizing both
the duration and quality of the best seeing conditions,
whereas an optical communication site is concerned with
minimizing the extent and duration of poor conditions. The
two are not synonymous, although both generdlly require
location at high altitude in a dry region. The OCEF study
restricted attention to sites above 6000 feet altitude to
avoid principal atmospheric dust and pollution, and helow
9000 feet because of physiological effects. For an opera-
tional site (as opposed to an experinental facility), it is
feasible to consider a self-sustaining unattended site with
communications to a control center by microwave relay, or
pethaps by a microwave Earth satellite system. Although a
dte, once constructed, may in principle be largely un-
attended, the difficulties and cost of construction argue for
sites with reasonable accessibility.
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The OCEF study2 recommended eight sites, all in the
southwest (the study was restricted to the continental
United States), but “*no site with unusually high year-round
reliability has been found.” Jutside the continental Unitea
States it would appear thet b oth available data and available
sites (considering political restricbons) are even more
lunited.

The single most important factor in determining the
suitability of a particular site is cloud cover. Water vapor
extinction coefficients are of the order of 500
(db/km)/(gm/m3) at !C microns and 1200
(db/km)/(gm/m?) at 0.5 micron.* Thus a cloud with a
water vapor content of 0.1 gm/m* and an extent of 1 km
will give attenuations of the order of 50 db at 10 microns
and 120 db at 0.5 micron. Certainly at optical frequencies
it is completely impractical to provide sufficient power to
overcome this attenuation. It is necessary therefore to find
sites at which probability of cloud cover is small, and then,
perhaps, use diversity to further improve reliability.

Data? exist on the average fractional portion of the sky
which is obscured by clouds on a monthly basis, but the
data do not appear adequate to determine quantities such
as correlation of cloud cover at widely separated areas and
the distribution of duration of outages and time between
outages. Unlike heavy rain, which is very localized, *“wide-
spread high-altitude cloud is often distributed over large
portions of the continent. In general, knowledge of such
formations is difficult to accumulate so that little data is
available.”?

To illustrate the variability of the data, consider some
results (quoted by Kalil®) on the percent of time lost due
to clouds at Baker-Nunn sites. These data are reproduced in
Table 54. In South Africa, from May through September of
1962, the monthly values did not exceed 8 percent. In
1963, May, June, and July were all above 15 percent. For
the ten sites and the two years quoted, there was no
example of a site which did not have at least one month in
which the percentage of time was greater than 50 percent.
Although there were several months which were good at
particuiar sites (June, July, and August in Peru), there were
months (notably January) at which none of the sites were
reliable.

Although a study has by no means been made of all the
available data, it appears that gross average cloud cover data
can serve only to pinpoint particular sites at which more
extensive measurements (c.g., monitoring solar radiation)
should be performed. However, even if such data are taken,
the variability of past data suggests extreme caution in
predicting what cloud coverage may be.

*The extinction at 0.5 micron is dus entirely to scattering, and the
numbers are t upon the sssumed distribution of
the size of the water dropleta. At 10 microns more than half the
extinction is due to absorption and the remilts are less sensitive to
droplet size distribution (see Chapter 4, Section 2).

5.2 Diversity

The fact that even good sites inay have substantial (50
pereent) cloud cover duning several months of the year and
nonnegligible cover (10 to 20 percent) over the remaining
months indicates that diversity would be required in an
optical receiving system. If there are n independent
stations, cach of which have reliability p, then the over-all
reliability 1s given by

P=1-(lp)F

This is illustrated in Table 55 in which the station reliability
required to achieve system reliabilities of 90, 95, and 99
percent arc shown. For example, three stations that are
usable 78 percent of the time would result in a systezn that
is usable 99 percent of the time.

The above oversimplified argument (which unfortu-
nately is frequently used to dismiss the cioud problem)
suffers from at least three major deficiencies:

1. Independent statistics arc assumed at the separate
receiving sites, whercas high-altitude cloud cover
and weather patterns tend to be correlated over
large areas.

2. The argument discusses the probability of having
at lcast one siation not covered by clouds at a
given time. It does not discuss the time statistics of
the resulting outages. Information or outage
statistics are required before anv meaningful
system design work can be done.

3. The implication of diversity on system operation is
not discussed. Many of the implications are
obvious and apply to any diversity system; e.g.,
duplication of facilities with intercommunication
(or communicatior. .0 a central point) required.
There are, however, implications peculiar to
narrow beam optical systems. These will be
discussed below.

The Earth subtends an angle of the order of 107
radians at Mars distance. A necessary (but by no means
sufficient) condition for optical systems to be attractive
relative to microwave systems (see Section 6) is the
achievement of beamwidths at least an order of magnitude
narrower than 107 radians. For example, a 1-meter
diffraction-limited telescope would have a beamwidth of
1075 radians (2 arc seconds) at A = 10 microns, and a
beamwidth of 5(10)” radians (0.1 arc second) at X = 0.5
microns. At a distance of 10® km, the corresponding beam
diameters are 10° km and 50 km, both well below the
diameter of the Earth. Particularly at the visible frequency,
diveniity stations could not be chosen to be within the
beam of the space transmitter and still be able to obtain
independent cloud-cover conditions. Consequently, it is
necessary for the space vehicle to point to a new station
when propagation conditions to a g.ven station deteriorate.
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Table 55
DIVERSITY IMPROVEMENT

No. of Percent Station Reliability for
Stations System Rehability of
90% 95% 99%
i 90 95 99
2 68 78 90
3 54 63 78
4 4 53 68

This in tern requires a mechanism for recognizing the
deterioralinn of conditions and a mechanism for switching
the beam to a new station.

The only reliable method to determine the guality of
the optical path between the space vehicle and a given
ground station is to measurs it. Thus, either the space
vehicle requires a broad-beam optical beacon to illuminate
the entire Earth or the ground stations require a beacon to
illuminate the space vehicle. Since the latter is required in
any event for pointing the space-vehicle narrow-
communication beam towards a particular earth station (see
Chapter 3, Section 4), it is the method which will be
discussed here. (Note that if the former, an optical heacon
on the spacecraft, were employed, it would still be
necessary to communicate the attenuation data back to the
spacecraft, although this could presumably be done on a
. wave uplink .)

rhe beacon acquisition field of view (see Chapter 3,
Secticn 4, and Chapter 4, Section 3) will certainly be wider
than the angle subtended by the Earth. If the angular
separation of the Earth stations (as viewed from the space
vehicle) is greater than the resolution of the acquisition
optics, then the separate beacons will give resolved spots on
the acquisition photo-detector sur{ace. The resultant
photo-current is then proportional to the sum of the
beacon powers with no cross terms present. If each beacon
is then chopped at 4 distinct frequency, it is possible to
separate the photo-currents by simple filtering and to
measure which is largest. Logic could be provided to
acquire the strongest such signal and to continue pointing
toward that ground station provided the beacon does not
drop below u preassigned threshold. (It is not practical to
adopt the strategy of always pointing toward the strongest
beacon, since this might involve considerable hopping
between stations of ccmparable level.)

Although the above operation is feasible in principle, it
does add appreciably to the svsi*m complexity. Each Earth
beacon would require a distinct chopping code, and the
space vehicle must be capable of simultaneously receiving
and meusuring the level of each such signal. Also, when

*As noved in Chapter 4, Sections 6 and 9,there is little reason to
consider heterodyne detection at visible frequencies.

handing over from one beacon to another. it is necessary to
center that teacon in the field of view by the motion of 4
Risiey prism (see Chapter 3, Section 4). Duning uus time,
commnmication is interrupted. The reacquisition s of
necessity slow, perhaps of the order of several seconds (see
Chapter 3, Section 4 and Chapter 4, Section 3), because of
the necessary sluggishness of the Risley priem and the fact
that the four-quadrant acquisivion system described 1n
Chap.er 3, Section 4 gives only the quadrant but not the
magnitude of the error until the beam is nearly centered.

Thus, in considering the merits of diversity, it 1s
necessary to consider not only the duplication of ground
facilities but also the disadvantages of the more complex
sp- cecraft and the effects of interruption of com-
munication during hand-over. It is necessary to aiso
consider the variability of atmospheric conditiens and the
possibiiiity for changes during the transit time.

§.3 Atmospheric Fluctuations

Although diversity may counter extended periods of
complete attenuation, it cannot counter amplitude fluctu-
ations which are fast compared to the acquisition time but
slow compared to the bit period. A< noted in Chapter 4,
Section 2, such fluctuations may seriously degrade the
performance of a digital communication system unless
substantial margin (6 dB or more) is provided. As noted in
Section 5.2, it is necessary to allow for at least several
decibels of atmospheric attenuation before switching to a
rew station; otherwise, the switching might occur too
frequently. Adding “standard” atmospheric attenuation to
the above numbers suggests ihat a ground-based optical
system will require at least 12 dB more avcrage siznal power
than that which would be calculated under free space
conditions. This indicates, for example, that a satellite
receiver need be only 1/4 the diameter 0. an earth receiver

for the same performance.
Another aspect of the atmospheric thictuation protlem

of importance for heterodyne detection at 10 microns* is
the lack of spatial coherence over e>tended distances.
Estimates that have been made of correlation distance range
from 0.5 to 4 meters (see Chapter 4, Section 2}, but actual
vertical propugation measurements are r2guired to reliably
determine this number, As noted in Chapter 4, Section 6,
the effective area of a single heterodyne receiving system is
limited by the coherence area of the ir.coming wavefront.

Larger effective areas may be ob:ained by using an
array of collectors, each smaller than tke coherence area. If
the heterodyre IF photo-current from each of these
collectors is coherently combined, then the resultant
effective area is the sum of the azea of each of the
collectors. However, to perform coherent combining it is
necessary to measure the phase of the photo-current at the
output of each of the photo-detectors. This may be done if,
in addition to the communication sidebands, the received




s.gnal hiss a carrier component such that the fraction of the
powern the carrier satisfies the ineguaiiny

P. W _
TOwe (&)

where n is the number of signals to be combined. W_ i the
bandwidth of the phasedock loop in which the carrier 1s
recovered and W is the communication bandwidth. Equa-
ton (8). which should be interpreted as a functional
ir..quality, rather than a precise numerical inequality,
simply states that relative to the communication signal the
carricr requires less power because of the reduced band-
width, but more power because detection must be on the
basis of each element of the arrav. To make carrier recovery
feasible. W_/W <. The bandwidth W_ is limited both by
the stability of the lase; transmitter and by atmospheric
effects. Propagation measurements® suggest that the miri-
num W, owing to propagaticn effects, may be as high as 1
kHz. If the information bandwidth is 1 MHz, a 10-element
array could be coherently combined with less than 1
percent of the power devoted to the carrier. However, if
one were i~terested in communication from distances of
the order of 10 AU, where smaller communications
bandwidth miy be of interest (see Secticn 6), then
coherent comtining may not be feasibic. Further discussion
of this appears in Appendix 12.

54 Background Noise

As noted in Chapter 4, Section 1, the background noise
intensity at cptical frequencies, even under day sky
conditions, is much less than 1 photon p- - second per unit
bandwidth per unit spatiai mode. Consequently, if an
opticai communication system receives only a single spatial
mode and if the noise bandwidth is matched to the
communication bandwidth, then background noise may be
reglected relative to quantum (signal shot) noise. Thi
situation generally prevails with heterodyne detection.
However, it generally does not apply in the case of a direct
detection system within the Farth’s atmosphere. The
remainder of this section will consider the degradation in
performance of a 0_.5-micron direct-detection system owing
to sky noise.

If there is sufficient photomultiplier gain that receiver
noise may be neglected, the information rate of a direct
detection communication system (see Chapter 4, Section 7)

sgenby 1 Ny QWA
“’(ilw)’ (“ P ) ©

where P is the received optical signal power, n is the
detector quantum efficiency, K is a constant which depends
on the modulation system and the error probability, for
binary polarization modulation K = 20 for P, = 10%, N, is
the background radian: ter._ity in watts/m? -Hzea, Q is

the solid angle field of view, 13 the predetection optical
filter bandwidth. and A is the receiver effective area.
Equation (9) may be rewritten in the form

P _1

'50=5[l+\/1+40] (10)

where P 1s the power that would be required in the

absence of background noise,

i,QWAn
KhvyH

and Qa an
is a parameter which indicztes the effect of the background.
In Figure 131, P/P,, is plotted as a function of &, both on a
dB scale Fora>1.7/P,~, ‘a.

Consider, for cxample, N, = 6(10)"'* watts/m? -Hz-s1,
corresponding to a day sky background, =197 sr,
n=0.iW=10"" Hz,A=50m?, and H=10° bits/sec. In
this case a= 40, which results in an 8-dB degradation (see
Figure 131) relative to the noiseless case. Thus, if there is
only sufficient power to achieve a communication rate of
10% bits/sec, the effect of the background is appreciable.
The effect will be even more significant for communication
from 10 AU, where smaller information rates are of
interest. (This is discussed in more detail in Chapter 4,
Section 9.)

A satellite receiver, of course, avoids both the day and
night sky background. Narrower fields of view may also be
employed to avoid having Mars or other stars within the
field of view (see Section 1.2). Thus, background noise may
be neglected with a satellite.

5.5 Beacon

As noted in Chapter 4, Section 4, there is a serious
problem in achieving sufficient beacon power from a
ground transmitter for acqnisition in the spacecraft. The
problem is more serious for a ground as opposed to a
satellite beacon because:

1. The minimum beacon beamwidth is limited by

atmospheric effects to about 10~* radians.

2. The beacon must te received in the presence of

carth shine.
Although a satellite beacon could in principle be narrowsd
below 107 radian, in practice the necessity of having the
beacon illuminate the spacecraft on an open-ioop basis
argyes against this. Considerable advantage is obtained,
however, by having the beacon located so that the Earth is
not within the field of view of the acquisition receiver. If
the beacon is on an Earth-synchronous sstellite and if the
spacecraft is in the vicinity of Mars and has an acquisition
receiver with a beamwidth of 107* radian, then, under
worst-case conditions, for 10 percent of the synchronous-
satellite orbit, the Earth will be within the field of view.
Because of the 23-degree angle between the plane of the

ISR, SRR
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Figure 131. Increase in transmitter power necessitated by background noise




echptic ard the Earth equatonal plane. there will be
exiended periods duning which the Evr h will net be within
the field of view (see Section 1). In t.e absence of Earth
shine. a CW beacon power of 3 witis would suffice as
compared to 200 watts from an Earth beaccn (see Figure
102). Thus the satellite receiver permits a beacon with mere
reasonable power requirements. It shoild be noted, how-
ever, that the above numbers correspond to a spacecraft in
the vicinity of Mars. If the distance is an order of
magnitude greater, then the beacon acquisition appears
impossible independent of whether the beacon is on the
Farth or in a satellite.

5.6 Hand-Over

The same logic that is used in diversity switching
(Section 5.2) may also be employed to effect hand-over
when a ground terminal is no longer visible :0 the
spacecraft. As the beacon from a given ground station fades
out due to shadowing*, the spacecraft acquisiticn system
automatically acquires the strongest beacon within the field
of view. However, as described in Section 5.2. this results in
an interruption in communication unless muliiple beams
are employed with the spacecraft transmitter. Although this
latter alternative has not been investigated in any detail, it
does not appear practical, particularly when th: vagaries of
atmospheric transmission are considered. Thus, in the case
of ground reception, even in the absence of a‘mospheric
attenuation, communication will be interrupted at least
twice per day.

As noted in Section 1, a Mars-synchronous satellite
will be continuously visible from an Earth-synchronous
satellite for periods of several months. This is a particularly
compelling argument for the use of a satellite receiver, since
only a single satellite and a single ground station need be
employed, with no concern for the problems of weather or
hand-over.

For all of the above reasons, the calculation of optical
system performance in the following section will be for a
satellite receiving system. Some comparisons will be made,
however, with ground-based receivers. The latter may be of
interest, for example, in applications in which occasional
loss of the high-speed data is acceptable.

6. PERFORMANCE OF OPTICAL SYSTEMS

In Chapter 4, Section 9, various optical communication
systems were compared, and it was concluded that at visible

*In practice it would be better to tum off the beacon when the
spacecaaft is below, say, 10 degrees elevation.

$The efficiency considered here is the ratio of optical output power
to low-voltage dc primary power (but excluding power required for
crling).

frequencies direct detection s a clear chowe over hetero-
dvne or opucal preamphfier system,, whereas 1 the
infrared (10 micron) direct detection 1s far inferior to either
heterody ne or optical preamplifier svstems. The 1deahized
performance calcu.ations indicate that megabit communica-
tion rates from Mars distance are feasible, and the miared
systems appear to have the edge

This section evaluates the performance of opticai
communication systems relative io the microwave and
millimeter performance evaluated in Sections 2 and 3.
Optical systems permit a transmitting antenna gain that is
several orders of mazmitude greater than that achievabie 2
microwave or millimeter frequencies. However, all of the
other factors in the transmission equation [Equation (7).
Section 2.1]: viz.. transmitter power. receiver aperture,
noise temperature. and modulation power efficiency. tend
to be poorer at the optical frequencies.

6.1 Transmitter Power

Considering efficiency, high power capability, and
detector performance, the leading laser candidate in the
visible region is Nd:YAG with second harmonic generation
(A =0.53 microns). As indicated in Chapter 3, Section 1,
single-mode power of 6 watts has been obtained with an
overall efficiency? of 0.2 percent. Both the efficiency and
the lifetime are limited by the pump lamp. With better
crystals for second harmonic generation an efficiency of 0.3
percent should be achievable with present lamps; sub-
stantial further improvement is possible with new types of
lamps that radiate more energy in the pumping band.

Bv far the best efficiencies and highest power have
been achieved in the infrared with the CO, laser (10.6
microns). For a flowing gas system, single mode power of
10 watts has been achieved with an efficiency of 8 percent,
although higher efficiencies have been achieved under
multi-mode and/or low power conditions.

Thus the efficiency of lasers is considerably smaller
than that of microwave and millimeter wave tubes. This,
coupled with the fact that laser efficiency generally
diminishes with increased operating temperature, poses a
more severe thermal problem for lasers than for microwave
power amplifiers.

In Table 56 the laser power output, relative 10 a 40
percent effic ncy microwave system, is shown for two
cases: (1) constant prime power and (2) constant dissipated
power. The thermal problem could be controlling, so the
second column in Table 56 might be more significant.

Thus, compared to a microwave system, a laser system
may be expected to radiate 9 dB less power at 10.6 microns
ana 23 dB less power at 0.53 microns. For example, if the
maximum power that may be dissipated is 300 watts, then
the microwave system would radiate 200 watts, the 10.6
micron system would radiate 25 watts, and the 0.53 micron
system would radiate 1 watt. .

é
i
1



Table 56
LASER OUTPUT POWER RELATIVE TO 40 PERCENT
EFFICIENT MICROWAVE POWER
(Prime Power. 1-5 kW Range)

Constant Constant
Prime Power Dissipated Power
(dB) (dB)
0.53u (0.3 efficiency) 21 -23
10.6u (8 efficiency) -7 -9

It may be argued that the efficiency of subsequent
laser systems have more room for improvement than
microwave systems and, consequently, that the above
differences will diminish with i Jn the other hand, the
optical system has been given i . . fit of the doubt that
the same heat may bz dissipated os 1n a e crowave system,
and in assuming that comparable reliatility may be
achieved. Also, no allowances have been made fo1 losses in
the optical modulatcr.

6.2 Telescope Gain

The gain of the transmutting telescope is determined by
the size of the objective mirror and the wavelength.
Assuming a 70 percent aper ure efficiency, the gain is given
by:

G = I(D/\)? (12)

Thus for D = 1 meter; i = 134 dB at A=0.53y, and
G =108 dB at A = 10.6u. At micrcwave frequencies, space-
craft antenna gain is generally limited (see Section 2) to 50
to 60 dB, so that optical frequencies offer the possibility
for substantial improvement.

Unfortunately there is rather limited information
concerning the weight of space telescopes. In Figure 132,
weight (see Table 32, Chapter 3, Section 3) is plotted as a
function of diameter. It is seen that there is a prohibitive
increase in weight (associated with active, segmented
optics) for telescope diameters in excess of 1 meter. These
results are for telescopes which are diffraction limited in
the visible region. At 10.6 microns it may be possible to
build larger telescopes with a smaller weight penalty, but
specific designs of 10.6 micron space telescopes do not

*As noted in Chapters 1 and 3, there is considerable variability in
the cost of microwave antennas and optical telescopes. As a rough
rule of thumb, costs are about the same for a telescope 1/i2 the
diameter of a steerable microwave antenna. Thus, both an 80 inch
telescope and an 80 foot S-band antenna cost about $1 million.
The corresponding cost for 200 inches and 200 feet is about $12
million. .

{There is a possible loophole in this argument because the thermal
environment of an Earth satellite is more severe than that of a deep

space probe.
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exist. It 1s seasonable to assume, however, that extension of
optical techniques should permit construction of diffrac-
tion hmuted t2lescopes of perhaps twice the aperture area at
1C.6u at the same total mass.

In Figure 133, the gain of microwave (2 and 8 GHz)

pacecraft antennas. and the gain of an optical telescope (at

A =0.53 micron) are shown as a function of weight. It 1s
seen that the gain advantage of the optical telescope
increases as the weight increases. This opposes the trend
that was observ:d at microwave and millimeter frequencies
where the higker frequencies are generally more advan-
tageous at low weight. (This is also apparent in Figurc 133
where the curves at 2 GHz and 8 GHz are further apart at
low weight than at high weight.)

It follows {rom Figure 133 that for a tclescope and
antenna weight of 250 pounds, the optical system achieves
a gain advantage of 75 dB with respect to a 2 GHz sy stem,
and 66 dB with respect to an 8 GHz system. For a telescope
and antenna weight of 1000 pounds, the corresponding
advantages are 83 dB and 75 dB.

6.3 Receiving Effective Area

In the case of an Earth-based telescope, cost is an
appropriate parameter to compare with the cost of iarge
receiving microwave antennas. Thus the cost of the 210
foot Goldstone antenna is about the same as that of the
200 inch Palomar telescope (See Chapter 1, Section S and
Chapter 3. Section 5)*. However, as noted in Section 5,
there are compelling reasons for employing a satellite-based
rather than an Earth-based receiving telescope. In this case
cost is difficult to assess — it includes not only the cost of
the telescope, but also launch costs, and the costs associ-
ated with the microwave link from the satellite to the earth.
Furthermore, the effective cost is strongly influenced by
reliability and lifetime considerations.

The approach taken here will be to consider a
synchronous-satellite receiving telescope of 1.4 meter dia-
meter, consistent with the 10.6u transmitting antenna. If
this diameter is indeed feasible for the deep space probe, it
should be feasible for an Earth satellite of similar cost.t
The same diameter is assumed for both 0.53u and 10.6u
since the telescope need not be diffraction limited in the
visible. It would need, however, to be diffraction limited at
10.6 microns for heterodyne detection systems.

Compared with a 64 meter (210 foot) microwave
receiving antenna, the 1.4 meter receiving telescope has 33
dB less receiving effective area.

6.4 Noise Temperature
For a satellite receiving system, background noise may

be neglected. Also, with the use of photomultiplier direct
detection at 0.5 micron and heterodyne detection at 10.6
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microns, the current at the output ot the detector s
sufficiently large (see Chapter 4. Sections 6 and 7) that
detector dark current and Johnson noise may be neglected
In this case the dominant noise term s signal shot-noise
(also called quantum rowise). For heteredyne detection
(Chapter 4. Section 6) this noise 1s equivalent to addiuve
Gausstan  noise  with  spectral density Ny = he. where
h = 6.63310)7* joules-sec 1s Planck’s constant, and v is the
center frequency. The mimmum equivalent system noise
temperature is then given by

T=hv/k (13)

where k = 1.386(10) %2 joule/°K 1s Boltzmann's constant.
Equation (13) also gives the minimum noise temperature of
an ideal laser amplifier (Chapter 4, Section 8).

Although in the case of direct detection, the shot noise
cannot be rigorously treated as additive noise of spectrai
density hv, as shown in Chapter 4, Section 7, this is an
adequate appr-ximation for most cases of practical interest.

It follows from Equation (13) that the minimum noise
temperature is 1350°K at A = 10.6 microns and 27.000°K
at A =0.53 micron. Compared to a 25°K noise temperature
at 2 GHz, there is a 17 dB noise penalty at 10.6 microns
and a 30 dB penalty at 0.53 micron.

6.5 Losses

By employing a satellite receiver, atmospheric losses
need not be considered. However, there are several other
sources of loss in optical receivers. Direct-detection systems
in the visibie and heterodyne systems in the infrared are
considered below.

Although optical preamplifiers alleviate some of these
losses, as indicated in Chapter 4, Section 9, the preamplifier
does not offer an appreciable net advantage at 0.53 micron.
The dominant loss is the quantum efficiency of the
detector. As noted in Chapter 3, Section 7.1, selected
photo-emissive surfaces are available with quantum effi-
ciencies of 0.20 at 0.53 micron corresponding a loss of 7
dB. In addition to the detector loss, there will be losses in
the optical filter and the polarizer (assuming polarization
modulation as described in Chapter 4, Section 7). However,
since background is not a serious problem with a satellite
receiver, there is no need to employ an unusually narrow
filter, and with careful design, it should be possible to keep
optical losses to no more than 3 dB.

In the case of heterodyne detection at 10.6 microns,
the quantum efficiency of photoconductors (which, how-
ever, require operating temperatures below 77°K; see
chapter 3, Section 7) is as high as 50 percent corresponding

*Indeed, to provide for continuous tracking and to more simply
generate a strong error signal, it is desirable to have the local
oscillator spot several times the diameter of the signal spot.
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to a 3dB . s There 1s not the need for an opucal filter or
polanzer. Altiough a beam sputter 1s required to combine
the signal and locil osciliator fields, there need be hitle
attenuation in the signal path since a local oscillator power
of the order of 1 nulhwatt (measured 4t the detector) i
sufficient to obtuin the quantum noise hnut {see Chapter 3.
Section 6). Thus, mn the optical combining, the signal
aitenuation can be kept well below 1 dB by use of 4 hugher
power of local oscillator (e.g.. a high reflectivity nurror may
be used for reflection of the signal and transmission of the
loca! oscillator).

There is, however. an effective signal loss in heterody ne
systems due to niperfect matching (botn amplitude distn-
bution and alignment: see Chapter 4. Section 5) of the
signal and local osciiiz.cr spots on the detector.* It will be
assumed. rather optimistically, that the tutal optical and
aligrment loss can be kept to 1 dB.

¢.C Communication Performance

The rarameter, E/N,, used to describe the power
e.ficiercy of digital modulation systems takes on a simple
interpretetica 2 - »l frequencies. Since E is the energy
per bit and Ivj ~ .12 is the energy per photon, E/N is the
number of photons required per bit.

In principle, the coherent modulation and coding
techniques that are employed at microwave frequencies
may also be employed with a heterodyne detection laser
system. Consequently, it will be assumed that heterodyne
systems may operate at the same E/N, as coherent
microwave systems; viz.,, E/N; =5 dB, as obtained with
biorthogona! modulatior.

In the case of direct detection optical systems, the
situation is different in two respects. First, direct detection
systems necessitate incoherent modulation which generally
requires larger E/N, than do coherent techniques. On the
other hand, a direct detection system which operates at the
shot noise limit (i.e., both background and dark current
negligibly sinall) has noise present only when the signal is
present. This contrasts with a heterodyne system in which a
continuous local oscillator implies a continuous source of
shot noise. Analysis indicates that both direct detection
binary polarization modulation and heterodyne detection
binary phase shift keying achieve essentially the same
performance; viz., E/Ng = 10 dB for P, = 107°.

As noted above, appropriate coding of the coherent
system (biorthogonal modulation), can result in about a S
dB reduction in E/N,. Although coding may also be applied
in the direct detection case, one is generally constrained to
decoding techniques in which binary decisions are made on
the basis of the individual pulses, and these binary decisions
are processed algebraically in the decoder. This binary
quantization, prior to the decoder, results typically in a 2
dB penalty relative to what may be achieved in the
coherent case.
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On the basis ot the ghove conadetations it will be
asstned that the beterodvne svstems may operate at the
same BN
but that direct detection aincolicrent svstems suticr o 2 dR
penalts (1N = 7 dB)

Consder nent the question of possible tuture yrowth
Sequenual  decoding  offers the prennse ot achieving
BN, =3 dB sith both the nicrowave and heterodyre
optical systems. In direct detection optical systems, pulse
position modulation, with a large nember of pulse posi-
nons, offers the greatest promise for a reduction in N
Consider. for example. g PPM system with 4 basic trame
period of 10 microseconds: each frame being divided into
2'® time slots of duration 10 nanoseconds cach. By
transmitting a puise n one of these 2'° slots, each pulse
conveys 10 bits of information. and the information rate 1s
10° bits per sccond. In the shot noise limit, 10 photons are
required per pulse which leads to an LE/Nj of 0 dB.
Aithough such svstems are considered in New Technology
Chapter and Appendix 9, they ate judged presently
impractical because of the contlicting requirements of high
average power, high average prf. and variable interpulse
times. Mode dumping techniques are generally restricted to
kilohertz pulse repetition rates, so that a two-order-of-
magnitude improvement would be required to achieve the
above performance.

On the basis of the above considerations, it will be
assumed that future growth may allow a 2 dB reduction in
E/N, for the microwave and coherent optical systems (viz.
E/N, = 3 dB), and up to a 7 dB reduction in the E/N, for
the incoherent optical systems (viz. E/N;, = 0 dB). Thus, in
terms of relative performance, the incoherent systems are
judged to have a 2 dB poorer E/N, than the coherent
systems, with a possible growth potential that would
convert this to a 3 dB advantage.

Table 57 summarizes performance of the 10.6 micron
and 0.53 micron systems relative to a 2.3 gHz system. The

assumptions used in Table 57 are listed in Table 58.

as coberent microwave svstemis (B N = 5 dil,
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With

svalem achieves essentialiv ot

tse assumptions, the antraresd heeroedvne
e pettormangee as the

visible
It can be conauded thar optical communication

microw e wstem, whereas the svstem s more
hoted
aateis achieve high Copaaty commumcation from deep
space. but o owave svaems can achieve smmlar or better
pertormange Tt should alse be noted that,
although the 10 6 mucion systent s (aecordimg to Table 37)
12 dB better than the O 53 nucron systern, thas presuimes
the development o spproprate trackimg techniques for
heterodyne recenvers, highspeed detectors, and matenals
capable of providimg modulation of ngh power signals with
low loss and low power consumption. Abo not reflected 1n
these numbers are the more difficult problems of scquisi-
ton and tracking necessary to establish and maintain the
optical communication hniks, as discussed i Chapter 3,
Section 4, and Chapter 3. Section 3 1 may noteven be
possible to maintain lock ot an optical transmatter at
distances greater than 1 AL

more  readidy

Table 57

PERFORMANCE OF OPTICAL SYSTEMS RELATIVE TO
2 GHz MICROWAVE SYSTEMS
(All Entries in Decibels)

10.6 microns (.53 micron

heterodyne direct detection
Power -7 221
Transmitting gain +60 +83
Receiving area -33 -33
Noise temperature -17 -30
Receiver losses -4 -10
E/N, 0 -2
Net advantage -1 -13
e o ——
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Recever losses <| dB

Quantum efficiency ¢S 0.2

Overall optical etficiency 0¥ 0.5
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CHAPTER 6.
TRACKING AND NAVIGATION STUDIES

1. INTRODUCTION

The tacking and naagation studies desonbed 1 thas
chapter are a necessary adjunct to the communication
system studies presented in the preceding chapters. In
particular, the navigation function provides the line of sight
at all umes for commusication, For beamwidths in the of
category this clearly does not present any difficulty, but at
optical trequencies it hecomes a more interesting prohlem.,

The philosophy sdopted in the numencal studies was
o use the simplest possible geometric and mathematical
models of the tracking process by which the essential
system tradeoffs could be dluminated. In some cases thc
*first-cut™ calculations were superceded by more elaborate
formulations after the essential features had been identified
with the simpler model.

Since a numerical simulation has to address itself to a
particular mission profile, an Earth-Mars flyby and an
intragalactic mission were chosen as typical cbject studies.
The former includes a Mars orbiter as a navigation aid for
the passing space probe. However, no attempt was made to
simulate the detailed visibility history in any specific case,
since variations in coverage “‘average out™ for navigational
purposes over a long mission. Since the process of error
propagation as a function of various mission profiles is too
complex to be expressed in a simple analytic form for
parametric trade-offs, one resorts to an ensemble of
individual case studies in order to draw general conclusions.
These mainly concern the relative effectiveness of different
kinds of observational data and tracking modes. The
following examples are a step in that direction; particular
emphasis is placed on comparisons between rf and optical

tracking.
1.1 Navigation for Transfer Trajectorics to Mars

Section 2 concerns steady-state navigation during
transfer from Earth to Mars. This error study relies on a

digital algonthm for refimimg upon the state covanance
matnx of the vehicle according io o maximum-hkelihood
processor 1toailows tor uncerrelated random errors an the
measurements and buas crrors, where the latter must be
added to the state vector in carrying the analysis across
midcourse corrections. The updating of the covanance
matnx to successively later times in the mission s based on
a digital aintegration of the differential equation for the
transition matrix.

The numencal studies compare navigational accuracies
attainable with r, 1 data from rf tracking alone and with the
inclusion of optical angle measurements. In assuming
realistic accuracies for the tracking data, serving as input for
the orbit refinement, some judgment had to be exercised.
While tracking precisions such as o, = 10 m and o; = 1.3
mm/sec are typical for DSIF-type equipment (see, for
example, Reierence S), the accuracies of range and range
rate from the trajectory determination will be less than
that, in view of geophysical uncertainties - in particular,
the probable error in the speed of light. Strictly speaking,
these effects should have been included as bias errors in the
statistical model but, for the sake of simplicity, this was not
donc. Instead, a range of input characteristics was used,
with o, varying from 100 m to 100 km and o; from 1 mm/s
to 3 mm/s. The largest standard deviations were taken as a
conservative representation of the current state of the art
while the high precision data were considered as projections
to the future when geophysical biases are better in hand. In
this simplified treatment, we have also neglected the fact
that o, and o; are functions of range and vary ovcr the
course of a typical interplanetary mission as the runge goes
from fractions of an astronomical unit to several astro-
nomical units.*

For the optics a 0 of 15 or 20 s was taken to represent
angle measurements through the atmosphere, while 0= 2 3
or better was representative of star trackers and astrometric
measurements. The contribution from high-quality optics,
if added to conventional r, r data, is most noticeable during
the near-Earth phase of the mission, together with bene-
ficial effects from changes in the tracking geometry and
accumulation of data. After midcourse corrections the

advantages of high-grade optics are again noticeable in
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tams of accelerated orbit refmement. However, these
pivotts must be expected to decrease i the future as
aintdler v dues tor o and g become realisie

A diastie artterence 1s observed between the error
propagation with a weighted least-square processor (as used
moseverd! past space nossions) and an optimal processor
Indeed. some cases show an increase in the rms position
crror with the former, in spite of data accumulation,
whereas the latter causes an effective suppression of errors,
as expected. (The eventual velocity error buildup after
flight times of about 200 days reflects the growing
perturbations due to Mars.)

Several improvements of tlus error-propagation model
are possible but have been orutted as insignificant to the
present system studies. Thus, for example, the biases should
mclude a realistic representation of tracker location errogs,
some of which are to be placed n synchronous orbits
around the Ekarth. Also, the uncertainties in vanous
astrophysical constants should be accounted for. Here some
rather exotic phenomena, such as vagaries of the Earth’s
rotation, wandering of the poles, and relativistic effects,
will influence the absolute accuracy of orbit prediction for
mussions of long duration.

1.2 Navigation Near Earth

An important aspect of most navigation schemes is the
tracking that takes place ncar Earth, this being the place for
correction of errors incurred during the injection maneuver.
The covariancc matr:x resulting from this phase represents
the initial estimate supplied to the long-range error propa-
gation discussed in Section 1.1.

At short distances from Earth ore may enhance the
navigational accuracy significantly by the trilateration and
triangulation schemes discussed in Section 3 and depicted
in Figure 143. A pair of tracking relays is used, at the stable
Earth-Moon libration points® or in synchronous orbits, to
yield the necessary base line. In order to minimize
computational complexities, a two-dimensiona! model was
treated, with the trackers in a circular orbit, the space
probe trajectory approximated by a straight line, and the
orbit refinement represented as a continuous process. The
resulting error histories show a sharp initial decline from
the wide baseline and data accumulation. As would be
expected, the addition of angle data significantly enhances
the estimates of trajectory parameters. The ms errors of
the input data were chosen conservatively for the same
reasons as in the preceding study, i.e., to allow for

*We restric: ourselves to the points commonly known as L4 and Ls,
which lie on either side of the Earth-Moon line mid form a
quadrilateral with the two primary bodies. In the rotating
framework of this quadrilateral, L4 and Ls represent stable
equilibrium positions for orbiting vehicles, as shown in the theory
of the restricted three-body problem,
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geophysical uncertamties. As optical measurements are
wefined beyond 1 s of arc, it twurns out that such
wmeasurements from near-Earth satellites can elimmare the
need for rf tnlateration or triangulation from stations at the
hibration pomnts

This two-dimensional model 1s thought to cover all the
salient points for a system tudy To be sure, the simulation
could be generalized by gomng to three dimensions and
including a more elaborate model for the position errors of
the tracking relays. Indeed, the latter should be envisioned
as output from a separate orbit determination for these
satellites and could lead to very interestine ramifications.
However, since these details will probably not affect the
overall trudeoffs considered here, they were disregarded for
the present.

1.3 Terminal Navigation Near Mars

The error study of navigation during a Mars flyby is in
ma - - ananalog of the near-Larth situation. In Section
4 ase ’ tracking relay is assumed in an elliptic orbit about
Mars and the space probe is traveling on a hyperbolic
trajectory. Again, a two-dimensional representation of the
encounter ‘s expected to contain most salient features of
the tracking problem as shown in Figure 145. The data
processing is modeled in an intermittent fashion and based
on 1, t data for the probe and Mars orbiter, each taken
from near-Earth trackers as well as relative to each other.
The covariance matrix is updated analytically.

One significant difference from the near-Earth simula-
tion is that the state vector of the observation satellite was
subjected to refinement, together with that of the space-
ship. Both would be iracked from Earth during the long
transit phase of the probe from Earth to Mars. The orbit »f
the satellite becomes quite well establish:d in that time.
During the critical hours of the flyby past the planet, the
orbiter serves as a nearby reference for the spacecraft. This
constitutes one of the interesting features in-this investi-
gation. In particular, the recovery of spacecraft ephemeris
accuracy after transient disturbances is greatly expedited
with the help of a Mars orbiter over Earth-based tracking
alone. Optical angle data were not found to affect this
contrast between Earth-based and satellite-based tracking in
any significant way and were not included in the plots of
results.

As in the other studies, obvious generalizations consist
of including the third dimensicn, treating biases properly,
and adding other types of cbservations, such as three-way
Doppler measurements between Earth, space vehicle, and
orbiter, as well as intermittent astrometric readings from
the spacecraft. In view of the great importance of on-board
operations in most flyby missions, some of these extensions
may carry more weight from the systems point of view than
the ramifications listed in Sections 1.1 and 1.2.




1.4 Intragalactic Navigation

This section gives an errer analysis of the steady-state
navigation process for trajectories leading out of the solar
system. [t parallels the Larth-Mar, transtor studies in
concept and methodology  All important phenomena, such
as error decay due to changing geometry, data accumula-
tion, and the use of optical angle measurements. repeat
themselves at a different geometric scale. Indeed, the use of
exoatmospheric optics together with DSIF-grade r, r data
shows its usual beneficial effect. As in the interplanetary
case. the ephemeris gradually deterinrates as the tracking
distances become very large.

The above remarks summarize what is described more
fully in the remainder of this chapter. While an effort was
made to conduct these navigation studies as background for
the various system comparisons for earlier chapters, a
certain looseness of coupling between the work in statistical
navigation and communication engineering is undeniable.
This may change for manned missions, where abort schemes
and autonomous navigation methods are essential parts of
any realistic system concept. In such cases the balance
between the tracking and communicatiion modes of opera-
tion for a given set of rf or optical equipment can change
noticeably in that the navigation function can place
high-priority, though intermittent, demands on the
communication capability of the system. These cun-
siderations are particularly germane to follow-on items
connected with terminal navigation studies (Section 4).

2. NAVIGATION FOR TRANSFER TRAJECTORIES TO
MARS

This section discusses the accuracy with which the
orbit of an interplanetary probe can be determined for
different assumptions about the accuracy and type of
available measurements. Specifically, orbit detcrmination
with range and range rate measuremenis is studied both
with and without optical inputs; i.e., highly accurate
azimuth and elevation angles. Random and bias errors in
the measurements are also considered. As actual in-flight
data processing is frequently performed using weighted
least squarcs, the accuracies obtained with this procedure
are ansiyzed. However, since improved accuracies can be
obtained using optimal data processing, this case is analyzed
as well. Finally, the section covers the effect of the
presence of optical inputs on the accuracies obtainabic after
a midcourse correction.

The computer program used in the above studies was a
modification and extension of one described elsewhere.!
The program computes the trajectory of the probe and the
transition matrices by numerical integration, taking into
account the gravitational attractions of Sun, Earth, and Mars,
Soine details of the expressions used in the analysis of the

data processing are given in the next several paragraphs.

2.1 Method of Analysis

The roliowing formula® give: the cevariance matrx of
the errors in the position and velocity components of the
probe (u, a I X 6 column matrix) after processing of m
observations (A, 4 1 X'm column matrix)

A = cov{du)

= (JTWH™TW [NAGNT + A, ] wigTwnt (D

The undefined quantities in Equation (1) are

J=§%l .am X 6 matrix

N

N= , a m X b matrix of bias sensitivities, where

visa | X binatrix of bias sources

A; ,a m X m diagonal covariance matrix of the
random errors

Ay ,a b X b diagenal covariance matrix of the
bias errors

W, a m X m weighting matrix used in the data
processing.

A detailed derivation of Equation (1) is given in
Reference 1, pp. B4 to B-6, and will not be repeated here.
This discussion will be limited to certain variations perti-
nent to this study, and also to ¢ rtain computational details
which are the difference between merely having a correct
formula and also obtaining correct resuits,

The matrix W is arbitrary in Equation (1), although the
equation was derived to investigate the case of least-squares
data processing, where W ‘s a diagonal matrix. The case
where W is the optimnal weighting matrix will be considered
because significant improvements in orbit determination
accuracy result when this is implemented.

Assume that the errors in the observations are of the

form

3

e=¢ +Ne"

where the components of ¢ are m sample values of m
statistically independent random variables with zero means
and covariance ma‘rix A, and the b components of ¢" are
sample values of b random variables with zero means and
covariance matrix A,. Then the optimal choice of W is
given by’

W= (A + NANT) -1 @
Equation (2) for W (a m X m matrix, in general non-
diagonal) can be inverted analytically by use of the matrix
inversion lemma? to yield

Wi A (R entan) T @




Insertion of Equation (2) into Eqation (1) yields

Ay = (JTw) ! &)
with W giver in Equation (3). Equation (4), with A = 0. is
tie well-known result for optimal prozessing in the pres-
ence of purely random v:rors, where W=A' Equations
{3) and (4) yield an explicit expression for the invers
covariance matrix

R _ | . T
A}‘=JT:\"'J—J],\!'N(AJ+NTAr'N) (JT’\,'N) ¢

Use of Equation (5) directly would be extremely un-
wise computationally because the multipiication of matrices
of high dimension will be called for if :a is a large number.
Equation (5) must be put in a suitable form for so-called
“batch processing.”* Assume that the m observations are
composed of m_,m;m, mg range, range rate, azimuth, or
elevation measurements wheie

z m=m i=ri,AE
i

and any of the m; may equal zero. Then, upc: suitable
partitioning of the matrices appearing in Equation (5),

-1 _
A, = 2

-1
T a-1 Ta-1 -1 T A1
TG L - TALN, (Ab_+ NiAriNi>

1 \ (6)
T a~In: T
<J; A,iNy
N,
where Ii=&—‘ amiXGmatrix,with)\ithelei
coluran of nieasurements of type i
o« N _
N3 am; X 1 matrix}

A, =0}1, with I the m; X m; unit matrix and o]
the variance of the itb type of mea-
surement

Ap=7},  the variance of the bias in the ith type

of measurement

Equat.on (6) cunsist of four terms (one for eazh type of
_ measurement) each of the same form as Equation (5).
These data must be processed sequentially, thus computing

*An analogrus procedure for Equation (1) is described in Reference
1 and in Section 2.2 of this chapter.

{For simplicity it is assum>d that bias errors occur directly in the
easurements only (i.c., not station location errors, emrors in
physical constants, etc ). Thus N; is a column of mj 1's.
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A, as successive tatches of data are processed. If the
componer: matrices of Eguation (6) are partitioned
properl. and simplified

) o
- E—zr -4 -1iTn [1Tn
A= |°i V-0 w, Ji“‘i("ir‘i) ’
i

i=rrnAE
(7
where
[ o ]
Ou,
axm' axm
Jiy = z v :
iti a“l &‘I6
m; a;\m_
| dg ]
. a)‘m -
1
S &
m;
N, =
3)\m
z i
dug

=7 [1oem ()]

The ~xpression w;' has been written in a form which is
determinate even if there are no bias errors (y; = 0) so that
Equation (7) can be uscd to analyze optimal processing of
purely random or ranrdom and bias errors.

For subsequent incorporation of the cffect of mid-
course corrections, Equation (7) can be rewritten in the form

Al =Q--PZlPT ®
where
My, \ T/,
= -3
? ZZ ) (m) @
my

T, T ——_————



! R To update the sums from t; to 14, Fquation (9) and
P Z[ -Zafla-zir.:ada_A:o-l_u (6 4) (]0)3.. rel:)laoed by I ’ ! ( )
= g . o .
I “r t A i E X
""l Ou,g a“l % 1 u
l Py =¢' (13, 1,)P,
. {o- -1 - =, 1T -
Z' = diagonal [w,‘,w{' wp! ,wE‘] (4x4) Q=9 (1, ))Qu¢ M (15, 1y)
Since ¢ is a symplectic matrix, its inverse can be
obtained by rearranging its terms. However, ¢ is obtained
) by numerical integration and is thus only approximatel
[For consisiency with the notion in Equation (7), r; could symplectic. For this reason the interval between t; and t,
be writter Am, and the column 3r/du is summec over the should not be too large in the initial portion of the
m, values or r. The other columns of P are treated trajectory, where the cu.rvature is high, or numerical
analogously. } difficulties may result.

The computatior 3l procedure is as follows. The
matrices Q(6x6). P(6x4), Z(4x4, diagonal) are kept In

storage and added to as cach point of data is processed. 2.2 Inclusion of Initial Estimates
When A, is desired, the sums are combined according to
Equation (8) to form A™, and then A, is computed by Consider the initial estimate to be an unbiased observa-
Livarsion. Additional data are processed by augmenting the tion of the state vector with covariance matrix Ao. The
a2ppropriate sums until the next time A, is desired, when matrices in Equation (1) for this case can be denoted by
Equation (8) is applied again. Since an initial estimate of u, primes and partitioned as follows:
with covariance matrix Ag, is not correlated with the data
processed later. it ~an be treated by initializing the Q sum (i) I
with AJ. [This and the corresponding procedure for = Y < —>
Equation (1) are proved in the next paragraph.] " i
One furter point must be considered. When the sums Q -1 .
and P are incremented, the sum and tl.e increment must be W’ Ao Y
referenced to the same instant of time. This is accomplished R Y o 1 '“; )
by using the transistion matrix which is defined as !
t -
o (t1.13) =% - % SR L A an
? ? : dus) OT N

Thue, if the sums are valid at t; and observations A are

taken at t,, P, is computed; i.e., P(t,) = (ON0p,)TN, and ) 0:'o0

P, is found as follows: Ap= o -A-b»
1

v () i ()

S(2 dayiN
Oy du,y (9)  Note taat Equation (1) could be written as
-(22)" @) N A= KA+ AT )
a4 ! where ‘
= JTwi
= o (13, 44)P; A
% A, = JTWNANTW) -
: Similady, 7 T
: Q= ¢7(t2, 4,)Qu(ts. 1) () A = TWAW)
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(o practice the sums A0 \LA are accumulated unnt!d 4 tme
twhen A 1s desired )
When bBquation (11) s inserted into bquation (1), the

result s

— a1 - eS| 3
A AT+ ADA) (3

where
.o -1
AT=AL '\0
- -1
r\r - A' + AO

Thus the effect of an initial 2stimate with covanance
matrix Ag is 1o add A 10 sums A and A, and leave «um
A, unchanged. Note that 1f ATs =0, Equation (13) reduces
to Equation (12} as expected. Also, befcre any data have
been processed A'= A, A;=Ag, and Equation (13)
yields A, =A, as it should.

Simiiar treatment of the optimal processing case [using
definitions from Fquation (11)] shows that Equation (4) is
replacea by

-1

A= (A‘(; +1Tw) ) (14)

Proceeding with Equation (i4) rather than with Equztion
(4; 1t can be seen that Equation (8) must be modified by
initializing Q with A ;ie.,

A.tl = Q- pz'pT (15)

where

Q=0+ A

2.3 Midcourse Corrections

The effect of a corrective maneuver upon the
covanance matrix of the position and velocity vector of the
spacecraft will be taken up next. Assume that the corrective
thrust is approximately constant, that the velocity change is
small compared to the vehicle velocity, and that the
duration of the maneuver is small. Thus the midcourse
correction can be treated as an impulse, and it can be
shown that its effect is to change the covariance matrix
according to ,

|

0 . G (16)

Ay, = A

where t_and t, refer to the instant before and after the
correction, 0 is the (3x3) null matrix, and C, is the (3x3)
covariance matrix of the vector of velocity increments.
Assume that C, arises from two crror sources: error i the
measurement of the velocity increments along the
acceleromster axes, and errors in knowledge of the orienta-
tion of these axes in the inertial coordinate systen. If the
nominal values of the components of the incremental
velocity are denoted by §, 0, §, the uncertainty in the
velocity increments by o,, and the uncertainty in the
reference directions by 04, then

n°+¢ #n 2t
_ . \ . (i7"
(SN IPN I SR S '

3¢ ey

This is discussed in Getanl in Reference 1, pp. A-33 1o
A-60. The effect of Equations (16} and (17) on Equaton
(5) will be considered.

It would be possible to proceed as follows if the data
before and after the midcourse correction were uncor-
related:

1. Compute A, by inversion of Equation (8)
Compute A,y using Equations (16)and (17)

A
3. Process data after t, using Equation (15) where
the covariance matrix of the “initial estimate™ is
Aq,.
+

Uniortunately, there is no reason why the data processed
before and after the midcourse correction should be
uncorrelated, and in the case under consideration, where
there are bias errors in the measuring devices which are
obviously unaffected by the correction, there will be
inter-batch correlation. This case must be treated by
altering the sums Q and P with C,.

Th= comrect procedure can be obtained by augmenting
the state vector to include the bias sources. Then, let y be
the augmented state vector where

o (u) uis 6x1

Y= W) visaxi
The inverse covariance matrix of y is known to be (see
Refegence 2):

- i)y 9\ ) | inverse covariance
cov! (y) = <¥) Arl <a,> + matrix of initial estimate

where A, is the covariance matrix of the observational
errors. The various matrices are partitioned as follows:

-1 50
cov! (y)= --ge;-. -1(22'37:’), ﬁ?.:.-:;.

Ag o
= - J‘ ----J .....
( )A, ity oAy

)
( A +a3 D STAMNN

“n e mecmrc e e ... -

OTAINT INTAIN +AY

N
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Z
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The point of ail this manipulation should become clear if
one notes Q' # cov'' (u). First, the abovs result will be
used as an alternate derivation of Equation (1). Using
Schur’s identity® to find cov(y) in a partitione< form, one
has cov(u) = A where

A= 3TAN + AY
-1
T
(AN ) (NT;IN + ) ( JTA;'N)
= Q - pz‘lpT

This is equivalent to Equation (5) except that Aj is
explicitly included, as in Equation (15). Also the various
blocks of cov!(y) correspond to the sums in Equation
(19).

To proceed fusther, cov'(y) must be partitioned as
follows:

(18)

where the number oi rows and columns in each block are
indicated by subscripts. The previously defined sums will be
given in terms of these blocks by

P(6X4)= Q%v—)

Also, note that U=ST, X =TT and Y =WT,
If cov (y) is denoted before and after the midcourse
comrection by A4,

(20

where A4 in partitioned form is given in equation (18).
[Compare Equation (20) for the augmented covariance
matrix with Equation (16) for the unaugmented matrix.)
Note that Eqaation (20) can be written in the form

Av = A + BCBT @

where BT = (04, :l;;. 034). Use of the matrix inversion
lemma on Equat’ nf’.‘.’))y’.:lds

AL = A2 - At enTAe) ™ (4 "’) @

41

By performing the manipulations in Equation (22) and
defining _
M= ( C, 1+ ) !
it is found that

R,=R_- S_MST
S,= S_ -~ S_MVT (23)
V,=V_ - V_MVT
T.=T_ — S_MW_

(29)
W,=W_ -~ V_MW_
Z,=72_ - WiIMW_ (25)

Thus Equations (23) to (25) can be used to replace Q’
by Q.. P_ by P, [see Equation (19)], and Z_by Z, , and to
compute Al’. Explicitly,

=0 T
A, =Q -PZE

(26)
gives the inverse of the covariance matrix of u before and
after the midcourse correction. Equation (26) can no longer
b~ used for the case of zero biaserrors  (7; = 0) as might be
expected from its derivation, because cov *(y) of Equation
(1R) beccr ses singular with Ay —0.

2.4 Nunerical Results

A nominal trajectory was chosen from the large
number available in Reference 4. It was a low-energy (vis
viva integral of 8.049 km?/s?) trajectory with nominal flight
time of 198 days. A heliocentric ecliptic map of the
trajectory is shown in Figure 134,

It is assumed that the data processing would be
handled in three phascs: ncar-Earth, interplanetary, and
terminal. The following discassion is concerned mainly with
the interplanetary phase. The near-Earth phase (the first 10
days after injection) was considered only to obtain
reascnable initial estimates of the covariance matrix for the
interplanctary phase. More discussion of near-Earth
tracking will follow in Section 3.

The expressions 0, and o, will be used as measures of
the accuracy of the orbit determnination:

% = "u*':n“al
oy = Ia’ +a) + I“
and the ay; are the diagonal clements of the covariance

mairix. The expressions 0, (in thousands of feet) and o, (in
Mdndtluoffutpumd)m shown for the first 10days
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in Figure 135. (Alternate scales for o, in kilometers and u,,
in mm/s are given on the right of all the figures.) The data
were processed optimally, i.e., according to LEquation (8)
using the tracking parameters of Table 59. The covariance
matrix at Day 10 is used as the initial estimate in the various
interplanetary runs considered next.

During the near-Earth phase, only a single tracker on
the Earth’s equator is assumed to exist. Similarly, the
measurements during the interplanctary phase are assumed
te come from a single synchronous satellite.t In both cases,
the location of the station is assumed to be known exacily.
The effect of station location errors, which are always
present in practice, is to make the uncertainties in position
and velocity somewhat optimistic. There is no reason to
expect that the comparative accuracies discussed below are
significantly affected by station location errors. They are
dependent, however, on the error characteristics assumed
for the different tracking data. To arrive at a justifiable set
of values for these parameters (range, range rate, and
angular precision), several possibilities are examined.

Table 59
NEAR-EARTH TRACKING PARAMETERS

o, (feet)* 1000 (0.3)
o; (feet/second)* 0.1 (30)
05 (radians) 02x 1073
o (radians) 02X 107
¥, (feet)* 1000 (0.3)
v; (feet/second)® 0.1 (30)
7, (radians) 02X 1073
v (radians) 02X 107
Data rate One observation

per 15 minutes

*Approximate equivalents in km and mnV's are in parentheses. As
always, 0 stands for the standard deviation of a random error and
7 for that of a bias error. The subscripts A and E stand for meas-
urcments of azimuth and clevation angle, respectively.

Table 60 lists a range of characterisiics for the
measurement data serving as inputs to the tracking
calculations for the interplanetary phase. In range and range
rate, they vary from high-quality data, representing the best
possible in the forseeable future, to inferior ones

{Thess singie-tracker situntions do not take advantage of the
oporating modes discussed in Section 3, but this simplification
does not detract from the comparison of different kinds of
tracking daa for the interplanctary chase.

¥Thus, for le, oF = 3 mm/s is considered typical of current
Dsmma‘:g’ { typ
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(alternatives I-1I), where the degraded inputs serve as a
simphfied allowance for geophivsical bias errors, ¥ whose
rigorous treatment would require a more elaborate fiitering
algorithm.®  Three levels of optical precision are also
introduced, varying from standard deviations of 2 s,
representing exoatmospheric observations, to 15 s, for
endoatmospheric readings; 1.e., the former apply for
tracking relays on board Earth satellites or at the libration
points while the latter are representative of unpredictable
errors at ground observatories. In every case the assumed
value of the measurement bias (i.e., the v, to be dis
tinguished from geophysical bias) is set equal to the
assumed value of the random measurement error (i.e., the
0). Of course, their exact relation depends on the cpecific
apparatus under consideration. In the absence of any
particular instrumentation to which to tailor tkis study, the
assumption g = y seems as good as any.

Table 60
VARIATION OF DEEP SPACE TRACKING PARAMETERS

I o, =328 t (100 m)

o; = 0.003 fps (1 mm/s)
It 0, =3280 ft (1 km)

o; =0.006 fps (2 mm/s)

m o, = 328,000 ft (100 km)

0; = 0.01 fps (3 mm/s)
a 0p =0p = 10" radians (2s)
b 04 =0 = 1.75 X 107 radians (3.55)
c 07 =0[ = 2.5 X 107° 1adians (55)
d 0p =0 =7X 107* radians (15s)

Bias errors: for all cases -, = o, etc.

Duta rate: one observation per 12 hours

One source of geophysical bias is the errors in station
location, including survey errors, wandering of the poles,
and non-uniformities of the Earth’s rate of rotation.**? The
main concern, however, is the uncertainty in the speed of
light, ¢, of 2X107. This corresponds to an uncertainty in
the astronomical unit, A, of several hundred kilometers
even though the light time, r, (number of light seconds in
one astronomical unit), is knows: much better — with a
relative uncertainty of 0.01X 1%, Indeed, one might iake
the light time as the fundamental unit of length, and thus
make other (terrestrial) umts extrancous.® However, as long
a3 one does not do so it seems *wrealistic to take one's
procision of measurement much greater than the uncertainty
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of the unit 1t 1s measuied in. The uncertainty in ¢ affects
both the range and range rate data. The corresponding
uncertainty in A 1s taken from Reference S, and 1s the value
obtained after data from recent interplanetary missions
were processed. Thus it mayv not decrease drastically in the
near fature. However, sets| and 11 are included to show the
effects of eventual improvements in the astronomical umt
A*

Figure 136 considers the effects of range and range rate
data of different accuracy. The results were obtained using
the parameters ii..ed as alternatives L 11, and 1fl in Table
60. On Fig. 136a an initial error buildup in o is noted for
the less accurate tracking data represented by 11 and IlI. As
tracking data accumulate, this error growth is eventually
overcome and the usual asymptotic behavior prevails. With
alternative 1, representing tracking accuracies expected
some time in the future, this transient never occurs. In all
cases the o, plots of Figure 136b show a purely monotonic
trend.

Figures 137 to 139 show what happens when angular
data are added to the . r observations. It is recalled that
alternative (a) of Table 60 is typical of high-grade optical
tracking devices, relying on stellar references. Alternative
(d) is representative of the accuracy to be expected from
Earth-based optical trackers, which are subject to
atmospheric perturbations. In the latter case the error
propagation is not significantly affected by the optical data,
but the high-grade optical measurements from alternative
(a) prevent an initial error buildup if nsed with r, i data
representative of the current state of the art. Thus it is the
ratios of the o’s (and ¥'s) of different types of measurement
that are significant. In view of the uncertainties in
terrestrial and astrophysical constants, which affect the r,
data as mentioned earlier, the combination IiI(a) of
tracking accuracies is felt to be a realistic one under the
present circumstances, and one that shows some benefit
from optical data.

One parameter, the data rate, should be considered
somewhat further. A rate of 1 point cvery 12 hours has
been assumed for the interplanetary phase of the flight.

*Since A = crp, the errors in these quantities must be consistent
according to that equation. In Reference $, for example, c is held
fixed, and A and rp arc solved for as part of the post-flight data
analysis. Clearly, the consistent improvement of the systems of
units employed in astronomy and physics, with the help of data
from deop space missions, is a highly complex matter. 1t involves the
fitting of statistical models of vehicle dynamics, measurement, and
computing procedures to a great variety of observational data. A
detailed discussion in the present context will not be possible.

tWhe‘n the data rate is increased by n, one must also replace Aa' by
nAj and 7 by (l[\[ﬁm,topnfactotof\/i exactly in the sigmas.

$For example, in Reference 5 note that JPL's tracking rates for the
lunar orbiter missions are 1/min in Doppler and 1/3 min in range.
Prosumably these are optimal rates chosen as a compromise
betwoon various system considenations for this type of mission.
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This appears to be reasonable for data-processing purposes.
However, 't 15 interestig to consider the effect of other
rates. Processing more data can have two favorable effects
upon the variances. The first is simply t.e standard
phenomenon of reducing the variance of some variable by
taking more measurements; this is sometimes called tne
“square-root effect.” The second improvement is due to the
fact that the geometry changes with time and that the
additional measurements are qualitatively different. Cne
would expect this geometric effect to become negligible at
some small enough data interval, and indeed this can be
demonstrated.

Inspection of Equation (7), for example, will show. that
if there is no geometric effect, i.e., if the derivativcs aA\/op
do not vary with time, then if onc takes n times as many
measurements A{' will increase by a factor of n. Thus A,
will decrease by n and op and oy will decrease by a factor
of\/{l-.T The effect of actually increasing the data rate by
factors of 4 from 1 every 48 hours to 1 every 45 minutes is
shown in Table 61. It can be seen that the geometric effect
becomes negligible somewheie between 1 every 12 hours
and 1 every 3 hours, and that data rates higher than this
benefit only from the square-root effect. This will even-
tually drive the estimation error variances to zero as the data
rate approaches infinity for the error model v7e have con-
sidered. For other types of bias errors, where the present
estimator may no longer be optimal, or for least-square esti-
mation as discussed below, this may no longer be true. For
a complete study of these questions rather detailed instru-
ment characteristics and peculiarities of the measuremeni
process must be taken into account, some of which are dis-
cussed in the specialist literature.¥ Whatever a useful upper
bound for the data rates in r and T turns out to be, it is
usually true that increased rates for this kind of data pro-
duce the same beneficial effects as a result from the addi-
tion of angle measurements.

The effect of optimal vs. weighted least-squares data
processing is demonstrated in Figures 140 (for r, 1 and
angles) and 141 (for r, r alone). The effect is seen to be
large, with the position uncertainty at encounter being
greater by a factor of 8 with the weighted least-squares
method.

Of course, the results with the weighted lsast-squares
method depend upon the choice of weights, ie., of the
diagonal eiements of W in Equation (1). This choice appears
tc be soniewhat of an art rather than a science. One rule of
thumb, used by the developers of Reference 1, was to take®

Wi = o} + mpr}

where m; is the number of measurements. If ¢; = v, and
m; ~ 10°, this resulte in

Wi~ (my)' %,

Mt i o o
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Table 61
EFFECT OF DATA PATE

1/48 hours 1/12 hours 1/3 hours 1/45 minutes
202,089 (62) 25,883 (7.9) 7,368 (2.2 3687 (lL.1)
0.03935(12) 0.00532 (1.6) 0.00154 (0.5) 0.00077 (0.25)

7.5 35
*Approximate equivalents in km and mm/s in parentheses.
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" Figure 136a. Effect.of range and doppler accuracy
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Posably other chaces of Wowili pive botter resuits, but of
course none van give reenits better than *he optimai Hilter
Tire leastsquares results with and without angles {see
Figures 140 and 141) ere not cignibi-anily ditferent. unhke
the optunal processing resul's This 15 possivly a result of
the particular wewghting used. ‘the terminai use m the o,
plote which s particularly pronounced for the ieah-squarc
processor. 1eflects tne perturbations from Mars as the
vehicie enters the planet’s near field.

The position and velocity uncertainties after midcourse
correcriions with and without accurate angular c.ta are
considered next (see Figure 142). Midcourse co reciions
with components of ¢, . and § in Equation (17) of 30 fps
(9 m/s) are applied at 10 and 50 days. (Actually, 50 days 1s
late in practice for the second midcourse correction. It is
used here to emphasize the influence of th: time of
midcourse correction upon the effect of inclusion of angu-
lar data.) It is assumed that the uncertainty in the velocity
increments is J part in 1000, or 0.03 ft/s (9mm/s), and the
uncertainty in the reference directions 0.2X 1073 radians or
about 0.01 degrees. These result in an increase in velocity
uncertainty of 0.0030 ft/s (I mm/s) and 0.0043 ft/s (1.3
mm/s) at 10 and 50 days, respectively.

The angular data reduce the sigmas significantly for the
correction at Day 10, but miuch less for the one at Da, 50.
In fact, it appears likely that the difference in o, between
the two curves after Day 50 (Figure 142a) is due in large
measure to the fact that the effect of the first midcourse
cotrection on op is still non-negligible when the second
correction Is applied. Note again the terminal growth of oy
dur to Martian gravity.

2.5 Conclusions

The presence of highly accurate angular data, such as
would be obtained from optical instrumentation outside
the atmosphere, reduces position and velocity uncertainties
significantly during the early portion of an interplanetary
flight in the presence of r, r data representative of current
tracking techniques, Thus, for example, the addition of
optics with 0 = 2 5 to radar data witho, = | km and
of = 2 mm/s reduces the position error op from 13 to 8
km and the velocity error oy from 7.5 to 5 mm/s after the
fist 10 days of tracking. Similar results occur sfier a
midcourse correction. The effect is much less in the later
portion of the flight, Use of optimal data processing (as
opposed to weighted least squares) is shown to very
significantly reduce position and velocity uncertainties for
the entire duration of the flight. The extremely small errors

*The astrometric method consists of measuring the distances be-
tween the image of a target and neighboring identifisble stass on
some form of ssmipermanent record (such as s photographic
muhlonotmhnmoﬂhbonmo)‘rhmmwmnuundto
znnmpm angle read-outs from the pointing optics in
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winch are theoret:cally demonsirated suggedt that relatively
mmor geophy siwal uncertainties, such as the carth’s rota-
non, and polar motion, need to be nvestigated te actually
cbtami these accuwracies (References 5 te 7). This wall
require clahorate mathiematical models for various types of
bias errors. the proper treatment of correlations i random
error componerits, and an lowance for the fact that ¢, and
g; are actually functions of range. Such considerations may
go hand in hand with astrometric® measurements of the
space probe from ncar-Earth stations as an ultimate refine-
ment of optical techniques.

3. NAVIGATION NEAR THE EARTH

In this section an error propagation study is performed
with methods similar to those described in Section 2, to
reveal the salient properties of interplanetary navigation
schemes near the Earth. Range, range rate. and angular data
from multiple tra~king stations are considered. In
particular, it is assumed that Earth satellites and stations at
the Earth-Moon libration points perform the tracking
function. A two-dimensional model of this situation is
developed to compare the merits of optical angle data 2nd
trilateration range measurements.

3.1 Equations of Motion

The space probe will be considered as a point mass
moving in fieln: free space. Its trajectory is approximated as
a straight line and a planar geometry is sssumed. This
greatly simplified model is still an adequate representation
of the salient features of near-Earth tracking. The geometry

of this teacking situation is shown in Figure 143,

The dynamical equaticns are given in terms of the

vehicle position coordinates X, y as

K=l ¥t 27

The forces (or applied accelerations)

fx, fy are to represent
possible corrective thrust terms.

The solution tn Equation (27) with f, = f, =0y

"

X= TR T (t-to)

ymag +aq(tty) @8
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The parameters 4y, a,. a3, ag are the “orbital elements™ of

this system The ume vacation of the clements follows the
cauations

ag = ()

a; = -fy fte.)

a; = f‘(

ay = f, (29)

3.2 Observations

Observations are considered with respect to a station,
designated by the subscript i, at position X, ¥,. The
observed range, range rate, and angle are

/ \
2 2 172
i (X + Yi)

o= ("1": + YiYi) (Xiz + yiz)_l 7

—
i

b

9, = tan” (y;/x;) (30)
where
X = X-X
i Y-y
%= x-x
)"i = 7—)7,

A known nominal trajectory X, ¥ is considered along with
deviations from the nominal, 8x, 8y. The corresponding
deviations in the obs.rvations made from the ith station are
z;, where

= Hig+
Gn

The 8x1 state vector £ is composed of changes in the
elements a; and the bias components gy .

£T = (Bay,02; 533,524,818 83.84)-

The biases fy; could be direct biases in the measurements r;,
f;, 0; or biases in tracking station locations X;, ¥;. V; is a
white noise vector with independent components. The
matrix H; is

4

(ar, o, oy o o o Oy o
90, 3a, 8a; 2y 3, B, 3; B,
o, of o o o of o o
o s

Hoo| o o 5 5 % 3 % B
d0, 26, 06, o9, 26, 20, 20,
EEREE LY

The differential cquations of motion of the vector £ are

E-Ft+Gu (22)
where F = [0]
[t-1) 0 100000

GT =
'. D {t—t,) 01 0 0 0 O

T =
and u —(fx,fy).

3.3 Estirnation

A continuous-time Kalmar filter is used for estimating
the state vector £. The filter for the estimates € is

2= ¥+ Gu+ KD (33)

_ [z H .
where z = IZ;] andH = [H;J ; with the subscripts desig-

nating the two trackers.

The matrix K = PHTR™! , where
P=E [eeT], e»-?— £, R=cov V(t).
The equation for P is
P=FP+PFT + GQGT — PHTR'HP (34)

where Q is the covariance matrix of the noise introduced by
u; i.e., through the accelerating maneuvers. The matrix P is
the covariance matrix of errors in the estimate. To do the
error apalysis, Equation (34) must be integrated forward
from an assumed value P,. ‘The measurement covariaice is
defined as

M=E [(/z\-a (’z‘-i)”f]
A -
wherez = H"s\ and Z = E(2). In terms of P,
M = HPHT

M is also computed at each point along the trajectory, since
its comparison with the covariance matrix R of the input
data is another measure of the effectiveness of orbit
refinement.

3.4 Simulation Involving Libratinn Point Trackers

For the error analysis the matrix P(t) is computed from
an initial estimate P, at t = 0. The value of P, is determined
by the uncertainties in the first (crude) orbit determination.
Consider the refinement of the orbit elements as reflected
in the error covariance natrix P at time t >0.

Assume a probe trajectory heading away from Earth at
a 135-degree angle with the +x axis (Figure 143). This
resembles a typical escape trajectory for a space probe
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T, ere retned to much the e dooree ropardless

o diector of VO Uroserange errony dre IniwiNe
estennially myanzant wih the rawedton one.

It 0 acumied that fpicyd rms trsokme ernegs are 1.0
L an range. 3 mrm s oin range satel and 307 raduans (2
woonds of a10) i angle. These v dues are consistent wiih
those seiected in Seonon 2 aftod the best current claims are
downgraded in recogm.tor of astrophvsical uncertainiics
(though o, ix sill shghth optanistich. The cases of
1ange-range rale dalz and range-range rate-aagle data will be
treaied.

Let the staticn jocations of the libration point sateilites
atlgand L be

%, =~ Rjcos (wol* 5—6’3‘) +0.2 cos {;)ons)'
¥1= R sin (wo“‘?)«rozsi:: (O.Swot” 33)
x2= R lcos (QOH%) +02005(0.3wot)l
¥2= R [sin é-on% ) +0.2sin (030, ’,]

The emvors due to biases  in the clements of the libration
" point satellites are

sii > ﬁi (w1 ’Oo' - ﬁ' +2$in wol

6% = B, sin wot+ B j42 €08 Wyt @6
o = —We lﬁi sin Wot + ;5 cos “’ot]

5, =

W, 'ﬁ, cos Wyt —f;,, sin wot'

where i = 1,2. The functional forms of these erors reflect
the fundamental mode of motior. about a Jibration point,
which shall serve as a simplified dynamic model. It tums
out to be an adequate approximation of thc motion fcr
purposes of these orbit determination studies. The biases
- are By, P3 for tracker cae and B,, B4 “ur tracker twe. The
initial estimates of rms errors in §y are assumed to be 0.1
km. It is also assumed that R=3.0x10° km and
Wo =20/27 radiaus/day. Finally, the case R =0, represent-
_ ing a tracking configuration with stations on the earth, will
be compared with the libration point trackers.

The nomeng cemertc of the space probe are taken 1)

2, = 1C%km (107 kmi

_L73X10% km
\/IS dav Y

a3 =

(‘_ (.173X10° |_(m> (37)

——
J2 day

o = 1.73X10° km (0.;73)(1(1‘: .\»_rg)

p=
i - Ik .
N day Ve day

wkich corresponds to the configuration in Figure 143, Note
that 10° km. a tenth ¢f an astronomical unit (the value for
a; 1in parentheses). should be typical of the ranges
prevailing during the early tracking cperations for a Martian
trznsfer trajctory. On the other hand, 10% km represeits a
distance that is well into a Martian flyby mission and was
also used in these calculations by way of comparison.

3.5 Numerical Results

Numerical test runs were conducted for geocentric
distances to the space vehicle in the order of 107 and 10®
km. The geocentric radius to a libration point was taken as
R=3.0x 16 km, thus providing a base line of 6.0 x 10°
km. To examine the effects of trilateration from this base
line, the option R =0 was also exercised, which represents
the case of terrestrial trackers. The possible data combina-
tions were restricted to the usual two: range-range rate and
1ange-range rate-angles. Besides the rms angle error of 107
radians, more rcfined measurements of 10 x 10°° and
107 radians were included as an extrapolation to the
future. ihe data rate was assumed as one measurement per
day i every case. {in view of the long flight times and
hence large nurbers of observations involved, inis still
justifies the use of 2 continuous mocel for the estimation
process.)

Nea..y zll possible combinations of the above options
werc run, though only the meost significant ones will be
discussed. Witn range-range rate data only, a nearlinear
escape trajectory offers little opportunity for improvement
of the crc.s-range errors in the absence of tnlateration from
a long basc line. This is mainly due to the fact that the
tracking geometry undergoes little change with time. The
effect is bomne out by Runs ! and 2 of Table 62 and the top
curve in Figure 144, This situation improves significantly if
the distance between libration points is used as a tracking
base line, especiaily at nominal ranges of the order 107 km
(Runs 3 and 4; bottom curve on Figure 144). Whether or
not range or angle measurements are used to take advantage
of the base line seems to be relatively unimportant; i.e., the




traching pertormances based on tnlateration and tnangula-
tion are adentical 1or practical purposes However, optica
angles do represent an asset even without & bise hine for
moderate trackimg distances, as shown by Kian 6 of Table

62 and the nuddle curve on Frgure 1440 Increasine the

of optical data bevond 2 ¢ ot the aic does

ACCUTACY
relatively Little 0y enhance absolute position accuracies bui
climinates the need for a base line. as demonstrated b
Runs 13 and 14 of Table 62, Thic means that traching
reiays could, for instance, be pizc @ synchronous orbits
if optical data with rms eriors of 0.2 s were achievabie On
the other nand, 1f trilateration were the governing sechu-
nism of orbit determ:nation, such 4 ,>duction of baseline
would cut the effective trackirg distances to about 10® km
for the same o in vehicle position.

Finally. Table 63 exhibits the effect of using relatively
low-grade range data, which might for instance refiect a
deterioration of the ephemeris for the orbital tracking
stations. It is interesting to note that this influences cnly
the down-range position errors in the numencal runs,
whereas the interplay of various effects in the cross-range
errors remzins essentially unchanged.

2.6 Conclusions

The numerncal tesults of this study showa that state-of-
the-art epties, usm2 stellar reterences (o = 28). and DSH--
g, = 1 km,
v; = Imm/sec) are roughly equivalent as tracking caia fo
distances up to 107 km trom the carth. This companson 1
uf course cspecially valid for lunar missions. While range
trackang requares o base hme extending to the hbiration
pomts for vehicle position errors of the order =i 1 kn* the
saime can be accomnlished with optics trom near-ka th
sztelstes.

The expiessions in Equation (36) for tracker locstion
errors are, admittedly. 4 simplification. Not much reiine-
ment of the §, was expenienced in the numerical simula-
tions, and the values assumed for o, retlect seme
conservatism in this respect. A further sirengthening of
confidence in this kind of study. with a possible improve-
ment of trajectory accuracies in the near-Earth phase, wil
require 2 refinement of the ephemerides for orbital tiacking
stations. This implies more elabora - inodels for the
librational motion. As noted earlier. thiese models suggest a

tvoe  nnge  or nange-rate data (effectse

Table 62

ACCURACIES AT 30 DAYS — ONE MEASUREMENT/DAY
RMS range = 1 km
RMS range rate = 0.3 cm/s

Position Error Velocity Error
Nominal Libration (km) (cm/s)
Type RMS Tracking RMS Point
Run of Angle Distance Bias Radius=R Cross Down C ross Down'
No. Data (urad) (km) (km) (km) Range (x) Range (y) Range (x) Range (y)
1 rH - 108 0.1 = 98.6 0.179 1.17 1.16
2 rH - 107 0.1 = 98.3 0.179 1.17 1.16
3 rH - 108 0.1 3X10% 43.0 0.:179 0.5i1 0.508
4 r - 107 0.1 3X10% 4,74 0.172 0.120 0.058
5 rHtA 15 108 0.1 = 78.4 0.179 0.933 0.926
4 A io 107 0.1 = 12.8 0.179 0.194 0.152
7 A 10 108 0.1 3X10° 40.8 0.179 0.486 0.482
8 rirtA 10 107 0.1 3X10% 4,44 0.172 0.118 0.054
9 | #i+a | Ji0 10 01 | = 3717 0.179 0.462 0.446
10 | ritA | f10 107 o1 | =0 4.08 0.177 0.128 0.050
1 | e+a | /10 10° 01 | 3x10° 296 0.179 0.363 0.350
12 | oita | /10 1c7 0.1 | 3%10° 3.08 0.170 0.112 0.039
13 M+A 1.0 108 0.1 =0 12.8 0.179 0.194 0.152
14 rH+A 1.0 107 0.1 = 1.29 0.164 0.096 0.021
15 rrtA 1.0 108 0.1 3X10° 124 0.178 0.187 0.147
16 rHrA 10 107 0.1 3X10° 1.24 0.160 0.089 0.020
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Tablz 63

ACCURACIES AT 30 DAYS

ONE MLEASUREMENT. DAY

EMS range = 100 km
RMS range rate = 0.3 cra/s

Position Error Velocity Error
Neminal Libration (ki) .cm/s)
Type RMS Tracking RMS Point
Run of Angle Distance Bias Radius=R Cross Down Cross Down
No. Da': (urad) {km) (km) (km) Range (x) Runge (v) Range (x;j Range (y)
Py r+ - 1% 0.1 = 98.6 AR 1.18 1.17
2§ rHr - 107 0.1 = 98.3 12.8 1.18 .16
2 rf - 108 0.1 X0t 60.8 12.8 0.737 0.724
4 rH - 107 0.1 X108 7.66 12.7 0.205 C.104
5 rr+A 10 108 0.1 = 78.3 12.8 0.940 0.925
6 A 10 107 0.1 = 12.8 12.8 0.251 0.156
7 rHi+A 10 i0® 0.1 3X10° 55.0 12.8 0.670 0.655
8 +H+A 10 107 0.1 aX10f 6.55 12.7 0.290 0.092
9 | ita | S0 10°® 0.1 = 31.7 12.8 0.489 0.447
10 | #+A | JiO 107 0.1 = 4.09 126 0.200 0.062
1 reA | /10 10° 0.1 | X0 339 12.8 0.443 0.405
12 A 10 107 0.! 3X10° 3.59 12.6 0.186 0.060
K] A 1.0 10® 0.1 = 128 12.8 0.251 0.156
14 TH+A 1.0 107 0.1 = 1.0 12.1 0.167 0.042
15 rH+A 1.0 16° 0.1 3X10° 26 12.8 0.248 0.155
16 rrtA 1.0 107 0.1 3X10 1.28 11.9 0.161 0.042

functional form of the residuals in the ephemerides of
tracking relays which is slowly varying rather than a
constant bias or pure noise. The proper treatment of such
correlated errors would be the most ‘mportant statistical
feature of a follow-on effort. The ultimate liniits on
tracking accuracy from orbital relays will derive from
geophysical uncertainties and occulation conditicns.

In connecting the nearEarth phasc ic - heliocentric
representation of the trajecto-y, the prcblem of units
discussed in Section 2 was encountered. While a trilatera-
tion procedure implies terrestrial measurements (i..., the
meter) as a unit of length, the interplanetary phasc uses
ranges in terms of light seconds. Thus, the speed of light
becomes one of the quantities undergoing refinement.

Finally, a three-dimensional extension of the present
work should be considered for complete generality. To first
order, the dynamic perturbations and trajectory estimation
errors normal to the ecliptic are uncoupled from the
two-dimensional model. If optical dota are relied upon, the
same set of near-Earth trackers wili also cope with the
three-dimensional situation. If trilsieration is to be
simulated in the third dimension, one would have to

proposs tracking relays in highly eccentric earth orbits
wi-ose 1. ajor aes are essentially normal to the ecliptic.

4. NAVIGATION NEAR MARS

Cay ider a Mars flyby trajectory in a planet-centered
hyperbc ¢ orbit (Figure 145). The flyby wehicle F is
observec from a planet-centered satellite S by means of
ra.ge, rarge rate, and (possibly) angle measurements. An
Earth-centered range, range rate, and (possibly) angle
tracker E observes the satellite and the spacecraft, but is
limited by long range and poor gcometry. The observer S
would presumably improve the accuracy of . bit refine-
men and speed of error response. The question to be
answered by the present error analysis is: How much is the
perfo mance improved by addition of observer S?

4.1 OUrbit Geometry ard Observables

It is assumed that for most of the salient features of
the problem a planar solution will suffice. It is also assumed

(s




Figure 145. Geometry of Flyby (F) Trajectory and Satellite (S) Orbit, Mars at
Origin of Coordinates

SATELLITE PARAMETERS: FLYBY PARAMETERS:
Gg: 4400 km Ay = 1720 km
L =0t ws: 0
m:=0 e 583
Tez0 Tu? 16.37HR
100,000 km
6.4
20.7 '8.3 3 9 o3
2e.1 .
32.6 MARS SATELLITE
-PROBE ORBIT
! g TIME (HOURS)
i
Figure 146. Flyby Trajectory
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that the problem time s short enough to allow the
Farth-planet hine to be fixed 10 inertiai space. 1t s denoted
by umt vector 1. Umit vector = s taken perpendicular to ]
and through the planet center as i Figure 145, The
position of s denoted by vector p. which s assumed to
be a function of tune, and four orbut elements 3y, 87,43 dg.
The position of $1s denoted by a vector r which 1s assumed
to be a function of time. and elements by . by. by, by, The
E-planct distance vector is R, The derived vectors 1! from k
toS and 15 from F 1o § are then
it =P +1

S=i-p (38)

The observed variables are denoted M=120..,10)

—

M=lFls Rz
(39)
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Y= - @+ RYlp+RI

Mo ™ [ +R)- A1+ RI]

Here A, Ay, A3 are range, range rate, and angle of the
satellite relative to Earth. A, Ag, Ag are range, range rate,
and angle of the satellite relative to the probe. A, is the
altitude of the satellite above Mars. Ag, A9, Ao are range,
range rate, and angle of thc probe relative to Earth, N
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A vector o = (a).0;.45.94.b,.b3.b5.bg) of the
hyperbolic and elliptic orbit elements must be estimated
Let a represent a nominal tragectory and the deviations
from nominal =0 & The sensitivity matnix b, relating
errors in clements to errors an measurements AX 5
required. Thus h' - ON /00 defines 4 row vector of parti!

denivatives
h"—'(-a—)xi ,.a_k'_
\ O y 00g

This yields a vector z; of observations
Li=hda+V, =62

where V , a white noise representing observaticn crror.
The covariance of Vs E [V\V|] =R, 6, .

4.2 Kalman Filter'?

Measurements are taken at equal iniervals in the true
anomaly of the probe orbit. The optimal estimate is updated
at each measurement point. The estimate of 6« at instant n
is

A A A
oo,y =60, + K, (2, —H,b0y) (40)

where HI = (h,"T.hrz,T,. e .h,',OT) is the sensitivity
matrix of the combined observations and z, is the
combined measurement vector at the n'h sample point. The
8 x 10 matrix K, =P HIR,!, when P, is the covariancc
matrix of orbit elements, weights present observations by
the usual rationale: Observations believed to be very
accurate comparcd with current orbit element estimates
will be heavily weighted, whereas less accurate observations
will have little effect on subsequent estimates.

The state covariance matrix is the solution to the
equation

- T T)-
P,ey =P, ~PHT (R, +HnPan) WP (a1)

The matrix HY (Rnﬂinl’nHI ')"Hn is called the informa-
tion rate matrix and has the effect of reducing the diagonal
elements of P,. This equation yields a complete error
analysis of the orbit determination problem. P, (in double
precision) is solved recursively, given its initial value P,.
These iterative computations occur at equal increments of
f, the true anomaly of the probe. The given value of f is
taken and F, t are computed by known formulas. Thus the
hyperbolic orbi and its partial derivatives may be
computed. Using t, the elliptic Kepler equation is inverted;
the position in the elliptic orbit and its partial derivatives are
then computed (see Appendix 11).

The vectors hi are computed using the formula
b =(J, AJyB)




'
§
i

where the matrices are defined as follows with the hyperbolic
and clhiptic elements given by ap =ay. dag 7 e ay T W,

da & T.hl =iy ‘hl R I‘; =m, h4 =T

BB
e B BB
L A %,
ay; O oy O
db, ob, db;  Obs

*The vaiue of o; for the probe is somewhat conservative if
compared with the results obtainable by the program of Section 2.
Similarly, the orbit of a Mars satellite may be determined to

somewhat better accuracy from the Earth if tracked relative to the
planet.

tFor ¢ and o} from the Earth, published values for DSIF were
degraded, as in Section 2, to allow for astrophysical uncertainties
and position errors of the near-Earth trackers themselves. From the
Mars orbiter to probe, the signal to noise ratio (compared to DSIF)
would be Jowered because the vzhicle antenna is smaller than a
ground antenns and raised becsuse the range is about 0.001 of
interplanctay distances; the two effects cancel snd thus SNR is
preserved. The effect of timing uncertainties for Doppler record-
ings is crucial. A space-bom crystal oscillator can be stabilized
(short term) to 1 part in 1011, This ylelds a Doppler crror of 3
cm/s, In this study rms accuracies of 0.3 km and 10 cm/s were
assumed as conservative estimates, It is also pessimistic to assume

no improvement as the range between Mars orbiter and space
probe decreases, -

pry -y e .
, Tadon A

tne x and y components of vectors are denoted py = ¢ )
pq =pd. el

A new state vector will now be defined in rectangular
vzriables as XT = (p).02.0,.02.71.12,f1.F2) = (P1.02.03.
Pa.T1.17.03.74). Define M = E(6X8XT) as the error co-
variance matrix in rectangular coordinates. The relation
M, =SP_ST can be shown io hold, where

c - |A 0
3 O B

By starung with a value M, and setting P =
S7IM,,37! recursive computation of P, can begin. At the
output P is converted into M, by the above formula.

4.3 Numerical Results

Several cases were run on the digita! computer.
Equation (41) was solved for P, assuming steps of
fy - fy.1 =0.02 radian in the true anomaly. The input
covariance matrix M, was chosen consistent with the
programs for interplanetary transfer described in Section 2.
In fact, the rms values of initial uncertainties® were

Probe Sateliite
Position 5.1 km 1.41 km
Velocity 1.16 cm/s 24.1 cm/s
The rms noise in the measurements was assumed?t to
be:
From Earth From Satellite
Range 1 km 0.3 km
Range Rate 1 cm/s 10 cm/s

The nominal orbits for the space probe and the Mars
orbiter are shown in Figure 146. The following cases were
considered, using the above conditions: (1) probe observed
from Earth, (2) probe observed from satellite, and (3)
combined observations from (1) and (2). As indicated
above, the initial uncertainties in the satellite state vector
were assumed to result from earth tracking.

Ligures 147a and 147b show the evolution of position
uncertainty of the probe and of the satellite over a critical
period of about 15 hours. Ior the probe the Mar; orbiter
provides a great advantage in response time over Earth-
based observations. This effect brings the position error
from about 5 km to about 1.2 km during an interval of 0.2
radians in true anomaly or 9 hours of tracking time. In any
case the asymptotic position error is less than 0.5 km (after
157 hours of tracking).

Figure 148 shows the rms error in the probe position
vi. its true anomaly subsequent to a sudden rise in position
uncertainty represented by o, = 3 k. This might be due to
accidental interruption of &e tracking operation, loss of
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tracking antormaaon, or cother ancimabes ot the nission.

Again, observations from  the Mars orbater contribute
sigmbicantly toward aceelerated rescquisiion dunng tins
transient peniod. Note that this event was chosen to oceur
rather close i time to perigee

Frgure 139 <hows a plot simular to Figure 145 gang
the rms velocty errorn ressonse to g transient uncertainty
of 0% This could represent the recovery from a
mideotirse correctien wath loss of communication. Again,
the tacking asentance trom the Mars orbiter 1s felt in a way

sl to that of Figure 14X,

mis

4.4 Conclusions

The most significant aspect of the flyby mancuver is
the quick-response capability offered by the Mars orbiter
for absorbing sudden uncertainties in the space probe
ephemeris. This may be particularly useful for i ecking the
probe position along its trajectory, as needed for the precise
dispatch of automated excursion vehicles to the planet
surface. The value o1 the Mars orbiter as a navigation aid
during flyby is due to the prior orbit refinement it receives
from the Earth. Its very presence as a tracking aid during
the flyby maneuver is the governing feature of this
particular situation. In this respect, the addition of optical
angle measurements, with 0 = 2's, to the range and range-
ratc data generated between probe and orbiter is of
secondary importance. This was corroborated by a few
exrloratory results not included among the figures given
here. The same will probably hold for three-way Doppler
measurements between Earth, space probe, and Mars
orbiter. It seems particularly important to explain the
effectiveness with which the Martian satellite orbit may be
determined from Earth. Bias errors entering through
terrestrial trackers or geophysical uncertainties would seem
to make such a tracking operation rather questionable if it
were not tor the fact that differential observations of the
orbiter relative to Mars can eliminate their effect. A major
residual uncertainty would then be connected with the
timing of the orbiter’s motion, which translates into an
in-track error. This can stand a more detailed study.

For the three-dimensional case, the out-of-ecliptic
errors of the space probe may be reduced by using a highly
inclined Mars orbiter at considerable altitude. This aspect of
the three-dimensional problem may yield very interesting
results, Similarly, the proper treatment of bias errors
resulting from the tracking instruments and astrophysical
constants is important if a complete understanding of
ter:ninal navigation is to be achieved. Such studies would be
4pecially important if one were to investigate navigation
problems connected with the landing and return rendezvous

*That is, using Equation (15).
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of asuriace excursion vehiele or manned, round-tnp b,
NISSIONS.,

S. INTRAGALACTIC NAVIGATION

An intragalactic transfer: 1 e, a probe sent trom the
Earth to the outer reaches of the solar system and beyond,
will differ from the problems of Section 2 1n two ways The
trip will be longer, and for a large portion of the flight the
probe will be influenced mainly by solar gravity. Never-
theless, there 1s sufficient similarity 1. - this situation to be
considered a scaled-up analog of the int -planetary case.

Such @ nussion is simulated and the results described
briefly in this section. As in Section 2, the effect of the
inclusion of highly accurate angular information upon the
position and velocity uncertainties of the spacecraft are of
primary interest.

Numerical Results and Conclusions

The results of the near-Earth phase of the mission; i.c.,
the first 10 days, will be carried over without change; they
are taken from Table 59 ang Figures 135a and 135b. Thus
the position and velocity uncertainties of the probe are as
obtained previously. From Day 10 on, however, the probe
will be acted upon by the gravities of the Earth and the Sun
only; i.e., the Martian gravity is omitted from the computer
program. The data are processed optimally,* using the
tracking parameters given in Table 60, part Illa. The
position and velocity uncertainties of the piobe are denoted
0p and o, respectively, and they are illustrated for data
processing with (r, 1) and (r, I, angle)-type observations in
Figures 150a and 150b for the first 450 days of the
mission.

These curves are to be compared with Figures 137a and
137b, where a 100-day interval of an interplanetary mission
with similar tracking parameters was considered. As
expected, the results are similar for the first 100 days of the
flight. That is, the effect of highly accurate angular data,
such as would be obtained from exoatmospheric optical
instrumentation, is to reduce position and velocity unccr-
tainties significantly in the early portion (say, the first two
months) of an intragalactic flight. There is a gradual but
continua! increase in the uncertainties of position and
velocity as the time of flight becomes very large. This might
be expected from the increasing Earth-probe distance, since
the triangulation effect of the Earth’s orbital movement
relative to the probe becomes less pronounced with
increasing range. (The drop in position uncertainty after
Day 400, which scems to fall out of line, corresponds to a
significant, but periodic deccrease in the Earth-probe
distance ir this region, which is caused by the Earth’s
annual motioii.) One could inquire if a regular trilateration
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scheme, extended over interplanctany distances, might not
prove advantageous. Thus. for example. a Mars or Venus
orbiter and neaz-Earth satellites could supply the necessary
base line. Again, the payoffs from this scheme arc highiy
dependent on errors in this base line. which means that
adequate models for ephemeris errors and bias effects must
be provided.

6. SUMMARY AND PENDING PROBLEMS

The merits of op:tical angle measurements. if added to
range and range-ratc data, consist of -apid trajectory
refinement  or reacouisition after disturbances in  the
transfer phase of a rission and during near-Earth tracking.
In particular, this is true for range-rate data good to 3
mimy/s, as currently Guoted for the DSIF, and optical angles
with an rms er:or of 2 s, which are considered possible with
existing star trackers, laser telescopes, and attiiude stabiliza-
tion systems. The value of such optical trajectory refine-
ment for a particular mission must, of course, be judged in
the context of overall system studies.

The pervading hmitations of ali speaific caleulations
presened in Sections 2 to S s the speculative nature ot
degradations caused by Wases in the astrody nanucal models
used fur the vanous crbit determimations  These ingiude
errors in the astrody namic and geophy s:cal constants el
as the speed of light. statiors locations, wandering of ithe
Earth’s poies, and vaganes in its rate of rotation. Tne effect
of these uncertamties 1s to render the highest tracking
precisions currently avalable (such as g, = i0m at inter-
planetacy ranges) ¢ fully utilizable. A proper treatment
of this type of bias involves a significant extension of the
analyses presented here and should probably go hand-in-
hand with refined modeling of instrument biases en-
countered in the tracking, data retrieval. and midcourse
correction procedures. This requires a more detailed undes-
standing of specific tracking instruments and their perfor-
mance as a function of range. illumination conditions, etc.
Once this level of refinement is contemplated, one should
probably go to a full, three<dimensional simulation of
critical mission phases, such as the Mars flyby, especially if
an autonomous mode of navigation is to be considered.
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APPENDIX I. PRIME POWER

Many resources are being devoted tc development of
adequat power sources for space projects. Table 1-}
(reprintec frem Reference 1) summarizes the availability of
future prime power sources.

Prime power of 2 to 15 kW w7 be required just for the
transmitters visualized in ssaceciaft within the next 10- to
15-vear period (1 to 3 kW ). Solar -ells, isotope Brayton,
and/or reactor thermoelectric pre-ide adequate power.

Longlife spacecraft have been dependent almost
2> clusively upon solar cells for power. The solar cell array
on the Mariner 4 is the lightest to be designed and flown (as
late as May 1967)." Its weighi/; ~wer ratio of 100 Ib/kW
was one-half of that for the Mariner 2 solar array. Solar
cells will continue to be one of the major prime power
sources in the immediate future. A functionai model of a
12.5kW panel assembly will soon be ~ompleted.? An entire

system of four of these panels will have a weight/power
ratio of 42 Ib/kW. This will meet the early goals set by
NASA.! The long-range goals are 25 th/k¥ with power
levels up to megawatts.

A serious limitation in the use of solar cells is that the
output power is proportional to the Sun’s power.

Therefore, the suitability of solar ceiis is dependent on the
mussion, and it decreases rapidly beyond 1 or 2 A.U. In
addit:on, the solar cell is subject to radiation damage which
ultimately degrades its performance.

Nuclear power is generally thought to be the only
reasonable source of power in excess of a few tens of
kilov. atts for more than a few weeks duration.® Because of
the scarcity (and thus the high ccst) of isotopes the reactor
is most likely to be used. Much effort is beng de+ ted to
the nuclear reactons M and considerable progress is being
made. The weight/power ratio of the reactor is presently
reported to De 300 to 400 1b/kW with a goal of 170 Ib/kW
possitle by using the mercury Rankine cycle conversion

system.””*

In the range of power from 2 to 10 kW the isotope
Brayton system appears to be promising. However,
problems exist in developing the packaging: thus, accurate
assessments of the mechanical integrity and life capability

have not been made. The dates projected by NASA may be
ontimistic.

Table -1

ESTIMATED TECHNOLOGY READY DATES FOR
SYSTEMS OF PRINCIPAL INTEREST'

System 0.01-2.0 2-10

Solar cells
Isotope " 1ermoelectric
Isotope Brayton
Reactor thermoelectin
Reactor Rankine
Reactor thermionic
Batterics-

Steriliz. ble

5 year rechaygeable - -
Fuel Cells, 1 year li» s

p2

1966-1967
1966-1969

1967-1968

1970-1972

Probable Power Range (kW)

10-25 25-50 >50

1968-1969 1969-1970

1969-1971
1972-1974 1976-1980

1976-1980-

1971-1972
19721974
19731975

: : NASA RNGT-1545 - . :
- g - 1-1867 -

-




T obtain an idea of the relative costs of prime power should be expected and these ratios will both be reduced by

scarces in terms of weight for given missions, weight/power approximately one-half. For communication system
ratios of 75 Ib/kW for solar cell arrays and 30C It/kW for comparisons the relative ratios ave the moust important, and
nuclear reactors (both better than actually obtained at the these appear to be essentially constant (approximately 4)
present) will be used. It is noted that future improvement with time.
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APPENDIX 2. LARGE ANTENNA RECEIVING ARRAYS

The maximum gain that can be obtained from antennas
is limited by the inability to construct and maintain
extremely accurate antenna surfaces for microwave
frequencies. la the millimeter region, atmospheric
distortion of signals and mechanical errors in antenna
construction limit gain. Deep space mission requirements
make extremely high-gain antenna systems desirable;
therefore, some work has been done to determine the
feasibility of using arrays of large antennas.”

Antenna arrays seem io offer several advantages over a
single large antenna of comparable gain. Some of the more
important advantages are as follows:

1. The cost of an array is less than that of a single
antenna for extremely large equivalent apertures.

2, The antenna gain of an array is not limited to
phase errors introduced by the array ¢lements or
by the cunosphere under most conditions.

3. Pointing accuracy requirements for each array
antenna depend upon individual antenna beam
width.

4. Additional gain can be obtained as needed by
adding additional antennas.

5. Maintenance can be performed during operation
on an antenna, while still operating with a large
number of elements, without significantly
affecting performance.

6. An array with a large number of elements can
suffer failure of an individual element without
large gain reduction.

7. The array offers the flexibility of serving several
missions simultaneously because it offers
multibeam capability.

The array also has several disadvantages, which are as

follows: i

1. Phase-lock detectors require phase coherent
transmission. i

2. The number, location, and size of the antennas
limit the minimum obtainable elevation angle
(because of one or more antennas blocking the
others). Therefore, more gfound stations could be
required. -

3. Relatively complicated electronics are required to
insure coherent reception in the presence of
atmospheric turbulence.

o
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4. Enough signal energy must “e available at each
antenra to allow the phase-lock loops to track
signal phase.

5. Phasefront variations in the sign.]l must be slow
enough to allow phase-tracking loops to follow the
fluctuations.

At least one recciving array has been built and operated
for some time.? Operation of the array seems technically
feasible; therefore, some effort will be given to determining
the cost of laige antenna arrays and comparing it to the
cost of a sinzle antenna of equivalent gain. Initial cost
estimates will be madc: ifor single antennas and arrays for
operating frequencics of 8, 16, 35, and 94 GHz. System
cost will not be calculated because it is a function of the
complexity of the ground station, data processing, and
storage equipment. However, the basic receiving array
components, such as antenna structure and foundation,
servo electronics, and receiver electionics, will be
considered to determine the optimum antenna diameter
and the number of antennas for use in the receiving arrays.
Terminal equipment such as computers and recorders must
be used regardless of whether one antenna or an array is
chosen; therefore, such equipment will not be considered.

Table 2-1 shows the costs assumed for the components
selected. The costs shown are budgetary and may rise if
extremely sophisticated receivers are employed. The cast of
each item can also be expected to drop by 0.90 to 0.95
each time the quantity is doubled (0.95 is used in this
report). .

Figures 2-1 to 2-4 show the cost of the receiving array
as a function of the equivalent diameter of the array. The
most important conclusion that can be drawn from these
figures is *hat for each frequency the cheapest array can be
chosen. Tire number of antennas that give the most
economical solution for a particular equivalent area varies
as a function of the equivalent area, but uie optimum
antenna size is roughly independent of the equivalent
aperture chosen. The fact that the optimum antenna
diameter decreases with fr:quency reflects the cost of
increased surface error requirements at higher frequencies.
The selection of microwave antennas in the neighborhood
of 100 feet in diameter as being optimum is consistent with
at least three other estimates.!”> Some estimates have
placed the optimum antenna diumeter as high as 250
feet.*S It should be noted that the primary diffesence
between the -estimates. is the cost of eleciionics and




facihties used with each untenna. The hyghest estimate of clectronics without redundancy. If moie sophicticated
optimuri) antenna digmeter was made h_\ c()nsidcnng equipment 1s quuircd. L«lgcr antennas should be considered
extremely expensive electronics used with each element of to minimize cost,

the array. The results of this report are based on simple

Table 2-1
COST IN DOLLARS OF SELECTED COMPONENTS OF AN ARRAY

Compeaent Master Slzve
Antenna 6.7 x 105D" 3PS 6.7x 10°D! 2el 45
Servo electronics 10° 25x 100
Receiver 10° 10°
Total 2x 1C° +6.7x 10°D PP 43 125 x 10% + 6.7 x 105! 3P 43
REFERENCES
1. Stanford Research Institute, Feasibility Analysis of a Antennas and Propagation, Vol. AP-12 (March, 1964),
Deep Space Receiving Terminal Array of Large pp 169-176.

1_3‘3;?e:;ayA192: se, Final Report, Contract NAS 4. J. Schnader, “Receiving System Design for the
’ . Arraying of Independently Steerable Antennas,” IRE

2. J. Eberle, Hi}b Gain_Antenna Array Facilities at_the Transactions on Space Flectronics and Telemetry, Vol.
Ohio_State University, Contract AF 30(602) - 2166 une, pp 145-153.

(September, 1961). 5. P. Potter, W. Merrick, and A. Ludwig, Large Artenna

3. J. Eberle, “An Adaptive Phased, Four-Element Array Apertures and Arrays for Deep Space Communications.
cf Thirty-Foot Reflectors for Passive (Echo) Technical Report No. 32%8, Jet Propulsion
Communications Systems,” IEEE Transactions on Laboratory, Pasadena, California (November, 1965).
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APPENDIX 3.
GAIN OF ANTENNAS WITH RANDOM SURFACE DEVIATIONS

On-axis gain of antennas with rough reflecting
surfaces has been cumputed as a function of average
surface deviation €, correlation distance c. antenna
diameter D. and wavelength X. Gaussian siationary surface
deviations, Gaussian correlation ‘unctions, and uniform
illumination were assumed. It is believed that this
represents the first calculation of on-axis anterina gain vs.
wavelength when the normalized deviation (4me/N)? of
the rough surface is larger than 4.

The gain of shallow paraboloid reflector antennas
with random surface deviations lias been derived by
Ruze.!? The derivation was based on a scalar Kirchhoft
approximation to the radiation from reflector antennas.
The surface deviations were assumed to be Gau..'"n
stationary w:th Gaussian correlation functions. On these
bases an approximate solutionn for the antenna gain was
obtained in terms of 4a infinite series. The series has been
evaluated for relatively small rms surface deviation € in
comparison to the wavelength A, namely (47e/A)? < 4.
On-axis gain measurements of large reflector antennas as a
function of frequency in general exhibit the
characteristics as predicted theoretically by Ruze.
Asymptotic limits (as A = 0) for the gain were aiso given
by Ruze* based on a similar analysis by Scheffler.?

The present work was motivated primarily to
determine the gain in the region intermediate between
very long and very short wavelengths and to establish a
criterion for what surface deviations the asymptotic limit
was applicable. Of primary interest was the field
distribution, caused by an incident phase wave in the
focal plane of a paraboloid reflector antenna in the
vicinity of its axis. However, since both the far-field
radiation pattern and the field distribution in the focal
plane are Fourie: ir2nsforms of the antenna aperture
illumination, the deviations by Ruze are applicable for
determining both the far-field and focalplane
distributions.

The series solution for the antenna gain does not
seem to be suitable for numerical commutations for large
values of rms surface deviations. This is because of the
large values that some of the terms in the series will
assume before the teras begin to decrease. However, it
was recognized that, for the on-axis gain, the series is
relsted to an exponential integral. The exponential

integral has also an asymptotic series representation,
which is suitable for numerical computation for large
arguments. On this basis the cn-axis gain has been
computed as a function of the rms surface deviation to
thc wavelength ratio and for a raage of correlation
parameters. The asymptotic limit for the gain is evident
from these computations.

The off axis gain is more difficult to compute, since
the asymptotic representations of the series which would
facilitate such computations do not seem to be availabie.
However, it is shown that in the asymptotic limit, thc
gain reduces to that obtained by $ . heffler.?

In the following sections the gain of antennas with
rectangular apertures and Gaussian stationaiy surface
deviations is presented by assuming uniform illumination.
A generalization to include certain types of nonuniform
illuminations is discussed. The or-axis gain for antennas
with circular spertures is also given. It is shown that the
on-axis gain for an .1inas with rectangular and circular
apertures can be normalized, such that tke normalized
gain is the same for both. The asymptotic limit for the
off-axis gain is derived. The concluding section
summarizes briefly the obtained results.

1. ANTENNA GAIN

The far field gain, G(6,%), in the vicinity of the axis
of a shallow paraboloid reflector antenna with surface
deviations, z(x,y), is, by using the scalar Kirchhoff
approximation, given by:* :

15 41 By (x.y)E2 01,91 )¢!

G(6.9) = =
AZ
{Bu+ B, v+ ik [2(x.y) -2(x4,y1)]} ds ds,

- RO
IS E(x.y)ES(x.y) ds

where E, is the projected electric field on the sntenna
aperture and s is the aperture ares. ’

e e R
T
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A o= T = {ree space pivpazation constani

A

,;“ = kaung cosd

wavelength
J, = ksing sind (3
9 and P are the sphericai .cordnratﬁ indicated n Figure
21

U= X-X; @)
=y-n (5

[

The Kirchhoff approximation is based on the
assumption that the surface is locally plane. hence
Equation (!) is applicable to surfaces for which the
curvatures are small.

Equation (1) can also be used to determine the
power distribution in the focal plane of shallow
paraboloid 1eflector antennas, in the vicinity of the focal
point, in which case (referring to Figure 3-1)

L= kxJf ©)
ﬂy = ""f’r (7

where x¢ and y¢ are the coordinates in the focal plane
and f is the focal length.

If z(xy) is a Gaussian stationary random variable
with zero mean it has been shown™* that, by performing
the statistical averaging, the expectation value for the

- 7
gain, G(0.9), is:
1 51 E (x.y)E}
= 3% 525 s
G(e.d) = €
k!

x1.y1)e B u + 8 ) e g g,

§J E(.y)EY(xy) ds

)

where
€

»lg

€ = mms surface deviation
5 t(ll.v) couelauon function. ()]

> To evaluate Equation (8), four integrations luve to
'bepetl'omnd. It is shown in Attachment A that for -
,gmmmmlummmmm
_‘ummmufgmwotmmu._

- fotexmle ﬁuuatedcomeillumhﬂm )

‘‘‘‘‘‘

In particular for uniforn. illuminations. Ej(xy) = 1.
and for a Gauss:an correlation function. r. defined as

- (M)
c) ’
fuy) = e {10)
wier* « is the correlation length. it is shown in

Attachment A that the expectation value of the gain 1s:

o0

b ‘-'.'2
= o

n=1

62!\

n!n

3G (0.9) +(

ah

where G,(08.9) 1s the antenna gain in the absence of
surface deviations.
For an antenna with a rectangular aperture

4nA S0 B2 smﬂ b
G (0.) = ( —r (12)
x! ,1‘3 Byb
where A = 4ab is the aperture area.
8 == sno
Y sin (13)
and 2\/_n [- ¥ ' (19)

Equation (11) is in agreement with the gain derived
by Ruze for antennas with circular apertures except for
the term A,. This term is small, sinc® the correlation :
distance ¢ is small in comparison to the }'near dimensions ;
of the antenna.

For antennas with circular apertures thx evaluation of
Equation (8) is in general more difficult. Jowever, the
on-axis gain G(0,0) has been derived in Attscment B for |

P
R

form as Equstion (11) with § = 0 and

whers D i the aateana aperture Gamoter.
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2. ON-AXIS GAIN

Equaston (11) can b: readih computed for small
values of 52, Tor large values of £° the terms (6% n ! n)
will wssume veny large values. which would exceed the
accuracy of present computers before the terms decrease.
This series is therefore not suitable ior direct compuiation
of 1t 82 is large. However, the gain on-axis car be readily
comnuted by soticing that the series in Equation (3) for
¢ = G s related to an exponential integral. which also has
an asynptotic representation.

The expouential integral. E;. can be written,®

n (lo)

where v is Eulers constant. The asymptotic series (x —~
o) for Ei(x) is

N-1

et «~ |n! 1
E(x)=— ) [—- 0 — 17
X X" xN
n=0 o

Though tne asymptotic series diverges for al: finite values
of x it can be used to evaluate E(x) for large x by using
up to N terms/, where N is an integer nearest to the
value of x.

In tenms of the exponential integral, the on-axis gain
for both rectangular and circular aperture antennas is

D ¢ 2
— () 2 2c 2
G(0,0) = (“')l&’e's Py Sad 52e-6
4e Do

) ‘ .
[6H)- 15 A (18)
where D, is related to the antenna area, A, by
D} (19
4

One parameter in Equation (18) is readily eliminated
by defining a normalized on-axis gain, #0.0), by

-ﬂ'—o)—-= aze'az 2 zsze'az .
2
®, /4 )

[Ei(B’)- In$? -7] 4 _

%0,0) =

(20)

The normalized gain depends only on two parameters 52
and (c/Do)?.

Equation (20V has been comiputed by uung 3 SHARE
program for the vomputation of the 2\ponential integral
develuped by D. S. Villars. This program computes Ejn)
with at least 4 decimal accuracy.

Computations have been performed for 107 < §° <
80 and for 103 < ¢ D, < 0 1. The computed normaiized
gain is shown in Figure 3-2.

The computauons show the normalized antenna gain
has three distinct regions which are characterized by the
normalized rms surface deviation tc wavelength ratio 8.

In the region 0 < 8° < 1 the normalized antenna
gain is nearly independent of the correlation length. and
increases almost linearly with §°. in the region 1 <§° <
20 the gaw: is dependent on both 8 and ¢. In the region
82 > 20 the gain is almost independent of 82 and is a
function of ¢/D, only. This region is the asymptotic
region. For the range of parameters used in the
computation, the gain in the asymptotic region. for a
given ¢/D,, ratio, deviates by less than 5 percent from the
asymptotic value.

The curves shown in Figure 3-2 seem to confirm the
general characteristics of the measured gain as a function
of frequency of large reflector antennas presented by
Ruze,* which is included here as Figure 3-3.

The presented measurements extend orly slicatly
from the first into the second region but not sufiiciently
far to show the asymptotic region. A detailed comparison
of the measured and computed gain canmot be made since
uniform illumination has been assumed in the
computation.

3. ASYMPTOTIC VALUES FOR THE GAIN OFF AXIS

The computation of the off-axis gain dircctly from
Equation (11) can only be performed for reiatively small
values of 62, An alternate representation for the gain is
obtained by expanding the exponential in the second
term of Equation (11) in a power series. By using this
expansion and neglecting A,, Equation (11) can be
rewritten as follows:

2
o = o ea(z) T @r
m=0

Anff\"

—\= @n
m!
w_hele
< ey - % (GJ)W- 1 ‘
Au = € nz.:l ! n™*! @
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Except for the special case m = 0 trexted above,
asymptotic series representations for Ay, do not seem to
be available. The first term of the asymptotic senes has
teen obtained in Attachment T, where 1l is shown that

for ¢2 = oo
_ 1
Ap = 140 =~ (23
62

The off-axis asymptotic gain will be designated by
G(0.9)_, and is given by:

PSS 29
= aE-\ '((':’Ae sin 0)2
G029 (- ¢
and the corresponding norrialized gain
(25)

2! .
K0'¢)oo = (_) e-(C,M»G sin0)
D

(4]

Tae asymptotic value for the gain, Equation (24), is
in agreement with the gain obtained by Scheffler,’ based
on the following approximation to the Gaussian
correlation function.

(l -0'82) e—(mz"'vz)lcz_'_e-é2 52 <1
2 uiw? )
exefo (e
C
2,2
(l_e-sz)e-ﬁ Ic (u2+v2)+e-62 52 <]
(26)

Equation (24) is independent of frequency but is
strongly dependent on the ratio ¢/c. This ratio has been
interpreted as average surface slope.?

A comparison can be made between the previously
computed on-axis gain and that obtainable by using the
approximation in Equation (26). With the latter the first
term in Equation (20) is the same, and the second term is
approximated by

(1% 0ss2<1
2
5 [5.45’)- Ins? -1]~ @
1-63 5231
The RHS. and the LHS. of Equation (27) are
shown in Figure 34 as a function of 52. The maximum
deviation is 23.4 percent at 5% = 4, -

The asymptotic region for the off-axis gain has not
been determined precisely, however it is reasousble to

- region for the on-axis gain, L

- - 2
s et s e T AR vt ot T Tl < i w7 7o T 4 o s T semadilns w e o~

To obtain an estimate for the off-axis gain, the gain
of a wuriformly 1lluminated circular aperture antennu
without surface deviations (82 = 0) 1s compared with gain
of such an antenna with §2 = 25.

For §2 = 0, the gain <an be writien

z8
e\ W / 8
)
1, is a Bessel function of order one.
aD
w =T sind (29)

For 8% = 25, by using the asymptotic values for the
gain

G(0!¢)

()

A

Figure- 3-5 shows a graph of Equation (28) as a

function of the normalized radius W. In the same figure is

also shown a graph of Equation (30) for ¢/D = 31.6 and

¢/D = 100. The increase of the beamwidth with 62 and

the strong dependence of the beamwidth on the ratio of
¢/D is apparent from this figure.

b 2
~ (E)' & (/D Wb G0

4. CONCLUSIONS

The on-axis gain of antennas with Gaussian stationary
random surface deviations and Gaussian correlation
functions has been determined for antennas with
rectangular and circular apertures by assuming uniform
illumination. For both types a nonnalized expression for
the gain was derived which depends only on the
normalized rms surfac deviation to wavelength ratio, §°
and the natio of the correlation length ¢ to a defined
linear satenna dimension D,,. For circular antennas, D, is
the diameter. )

The antenna gain as & function of § exhibits three
distinct regions: (1) 0<5°< 1, (2) 1 <52 < 20, and (3)
52 > 20. The last region is designated as the asymptotic
region. In this region the gain is nearly independent of -

- wavelength.

The computed gain exhibits in general the
characteristics of the measured gain as a function of
froquency of lmge refloctor antennas reported in the
literature. These messurements extend only into the
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second region and therefore not far enough to show the
third (asymptotic) region.

‘The off-axis gain can be readily determined in the

first and third regions. It is shown that, in the third

reyion, the expression for the gan reduces to that
previously obiained by Scheffler. In the second region the
off-axis gain computation is mote difficult, since the
desired representation of the series which would facilnate
the computatiors do not scem to be available.
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Attachment A. GAIN OF ANTENNAS WITH RECTANGULAR APERTURES

To evaluate Equation (8) for antennas with rectangular
apertures. consider the following integral

a a b b
- 2 2
= ¢ fff J B e,y e 0
-a -a-b b

RN L dxdy, (A-1)

with
U= X-X (A-2)
VEY-y, (A-3)

Since Equation (A-1) contains the correlation function
in terms of u and v, it is preferable to introduce the u.v co-
ordinate system.

In the x,x, coordinate system the integrations are over
the square region shown in Figure 3-6. In the y,y, system
the region is similar. With thé coordinate transformation
Equation (A-2), the transformed region in the x, .u coordi-
nate system is also shown in Figure 3-6.

In the x, .u plane¢ integration with respect to x, is read-
ily performed for certain types of illumination functions.®
In particular, let

E(xy) ® EqE,) (M)

and Ein)® ) Lol (&)
|

with a similar equation for E (v, +v). An example of sch
-mu.wmmm
Equation {(A-5) will comslit of two terms.

It i sufficient %0 comider the following integral

f, - ] ] R (4

<4 -,

‘Ainh.h‘hﬂgnnlwmhh“
W wines from 2 mudom

Referring to Figure- 3-6, Equation (A-6) can be written as

2a au

1, = f [ g(x1)f(u,v)dx,du
0 -
0 a
+ [ j gx)f(uv)dx; du (A7)
-2a -a-u
let G(x,) = [ g(x;)dx
then
2
' f { {G(a-u)-G(-a)] f(u,v)
0

+ [G(a)-G(-a+u)) f(-u.v)}du (A-8)

Using Equation (A-8) and assuming uniform illumination,
E, = 1, two integrations are readily eliminated and Equation
(A-1) reduces to

= “-63f f (M)(ZM)GG’““'"

cos f, u cos ﬂyv du dv (A-9)

By expending the exponential function in a power series,
Equation (A-9) can be divided into two parts corresponding
to the coherent and incoherent parts of gain, s follows

[T AL W (A-10)
and
28 ntat AN
l‘-(l)’-Ao"(" T ) (11
ad
e " A z ]‘_':‘,!’.'!'
mu,uul,vtha%4 w12
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Figure 3-6. Coordinate transformation
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where

o 2a 20

. 2
Alum = 4e'6 z / [ [2(butav)-uv]
n=t 0 0O

(62 r(u,v)]"
n!

cos B, u cos Byv dudv  (A-13)

and A = 4ab is the aperture area.

It isnoted that the coherent part of the gain is the same
as the antenna gain in the absence of surface deviations but
multiplied by e . This follows from Equation (A-1) by ex-
panding the exponential function which contains the corre-
lation function in a power series.

Tu obtain an estimate for lum, Equation (A-12) s
evaluated for 6x = ﬁy = 0, corresponding to the on-axis
gain, and for a Gaussian correlation function
v3)/c?

r(uyv) = € (A-14)

where c is the correlation distznce.

On-axis
L (00) Ac? z 6*)" ' c 1 1‘
,0) = mAc =
unc A n'n 2vm\a b
n=

&2
+
mAn

2
In Equation (A-15) terms of order e:'"a"/")2 and ¢™(26/0)
were neglected.
By extending the limits of integrations in Equation
(A-12) to o=, the integration of the first part of this equa-
tion can be performed and gives Equatior (11) of the text.

(A-15)

32
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Attachment B. ON-AXIS GAIN FOR CIRCULAR APERTURE ANTENNAS

For circular aperture antennas the on-axis gain for uni-
form illumination and a Gaussian correlation runction is ob-

tained from Equation (8) by expanding the exponential
Tunction and performing the integrations for the n=0 terms,
and the integration with respect to the azimuthal coordi-
nates for the remaining terms, resulting in

52 (8mY oy
G(0.0) = ( ) D) —1, (B
n=1
where D is aperture diameter, and
D/2 D/2 ) 2
_ -n(p +py)/c
I, = / [ e
0O O
2nPPl
I = )P dpp, dp, (3-2)

I - Modified Bessel function of order zero.

The two integrations in Equation (B-2) will be per-
formed with the aid of the Q(y.a,) function defined by 8

Q(Y’an) = / e'(x2+y2)/ 2Io(xy)x dx

(B3)
3
Let x = +np/c (B49)
y = vVap/l (8-5)
D n
== /= (B6)

n c 2

With Equation (B-3) - Equation (8-6), Equation (B-2) can
be wnuen

Wz
I =(—§-n) [ oayey @
0

Integrating by parts results in

[ [aal+ f"f-dv @

'lhedenvatmianmtionM)unbeexpmda

d 3
R i TR
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Equation (B-9) is readxly derived from Equation (B-3) and
the following mtegral

oo

2 2.2
[ eI xOL Ot di=e X Y2 gy (BA10)

where J_ is a Bessel function of order v. Substituting Equa-
tion (B-9) into Equation (B-8) and integrating by parts
results in

2 2
CZ an _32
I =<-2-n> 3 Ill ~Qa ay)-e "1, (anz)]

a
n (a 24+y?)
— e —lyl,(a ]d,
20[ dy[yn(,,y) y

(B-11,
Using the relation

d
— yhiay) = a yI (ay)

& 12)

and the definition of the Q function, Equation (B-3) esults

“n 1.( )} (B-13)

(S o] 2

To evaluate Q(a,,a,) use is made from the following rela-
tion readily Jerived from Equations (B-3) and (B-10)

Q)+ QBa) = 2+ [ e# 1
(0]

{ d;‘t [rot@ 1,60 ]dt

(B-14)

Integrating Equation (B-i4) by parts and using Equation
(B-10) gives

QX +Qxy) = 146X YR | xy)  (B15)
With Equations (B-13) and (B-6), Equation (B-2) i given by

o =(5) 2

DA o

1- N2/

&
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The gan on axis (B-1) can t:erefore be written by using
Equation (B-11)as:

-

——— D %y
51001 = (—) lzs%e*"2 NEIFTE S
1€ D
> 6:!‘! ]
N In-.\ ] (B17)
&< n!n T
n="' J

{B-1x)

For n'2(D/c)* >> 1. when the modified Bessel func-
tions can be approximated by the fi.st terms of t}-c asymp-
totic series. 3 is then given by Equation (15) of the text.




Attachment C. ASYMPTOTIC VALUES FOR THE GAIN

Consider the series. A_ . given by Equation (22) in the
text. which enters in the evaluatiun of the off-axis gain. This
series can be written as:

The first series e Eqiation (C-2} is summable since

i +m+ 1 m*] X
LS PRURROIN @)™ 52 (5%) _
A 52 Z 3k (nt1){(n+2Kn+3)..(ntm+]) 1) () e o (C-3)
=e - n+m !
" =1 n'n™ Y nt1)}n+2)n+3)..(ntm+l) n= k=0
¢ l;eéfom:.ing tgeli:ld:‘cat.ed mul_(ti;:licam:nls] m'the numera The second series in Eauation (C-2) is estimated for
or of Equation (C-1), A, is rewritten as iollows 5 - = by proceeding in a similar mznner as in Equation
) o e e+l (C-1): hence,
All’l = e's ( + +1) '
n+m . co
n=1 Vx (82 )n+m+l
< i —2 “0(5 ) ©4)
mt] e (az)mm-rl n=1 (ntm+]) 'r' 1)
+ z 29 _‘_Q] (©-2)
- +1)!
=1 n=1 (n+m#1) In From Equations {C-3) and (C4) the asymptotic value
where ag are constants. for A is obtained and is given by Equation (23) of the text.
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APPENDIX 4. STABILITY CONDITION OF THE
BEAM-POINTING CONTROL SYSTEM

The linearized and beam-pointing control system in Figure
100 of Chapter 4 can be redrawn as shown in Figure 4-1, in
which the variable s is the Lapiace transform variable of the
continuous time t. R(s) is the transformed beacon image
positien. Cy(s) and C,(s) are, respectively, the position of
the tracking telescope optical axis and the position of the
tracking transfer lens when referred to the optical axis. C(s)
is the transfer lens to Earth beacon line of sight. K,(s),
K2(s) ~nd G(s), Gy(s) are the respective controllers and
transfer functions.

The condition of stability of the individual loops is
that the characteristic equations

1+K; (5)G, (9= 0
1+K; ()G, (s)= 0

must have no roots in the right half of the s plane.
The character:stic equation of the composite system is

[1+K, (9)Gi ()] [1+K2(s)Ga(s)) = O

Clearly, the stability of the individual loops implies the
stability of the composite system.

When the beacon signal is pulsed, the requirements for
stability translate to the conditior that the discrete version
of the characteristic equations of the individual loops shall
have no roots with magnitude equal to or greater than
unity.
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Figure 4-1. Stabiiity of beam pointing control system
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APPENDIX 5. THE GRAND LOOP

It was shown in Section 3.2 of Chapter 4 that the
control and stability problem associated with the grand
loop during acquisition can be treated as a problem
involving a dynamical system with constant time delay
between the input and the-output. Since error detection for
the grand loop is discrete in time, the controller design can
best be treated in the discrete time domain using techniques
discussed in R. W. Koepcke, “On the Control of Linear
Systems with Pure Time Delay,” JACC (1964).

1. SYSTEM MODEL

The coordinate system chosen for the beam pointing

control system on the space vehicle is defined in Figure 5-1.
In this figure the x;x; plane is perpendicular to the
apparent line of sight (ALOS) from the vehicle telescope to
the Earth station. The x; axis is the projection of the
vehicle — Sun line into the x;x, plane, and the x, axis is
the line perpendicular to x; and the ALOS. The nominal
pointing direction xy is obtained initially from the target
ephemeris. A sequence of scanning directions xg is
superimposed on xy. The scanning beam scans with a
suitable beam size through a given field of search around
the nominal pointing direction xy. It carries codes
identifying its position with respect to xy. When a
reception of the scanning beam is made at the Earth
station, a pointing error relative to xy can be identified by
the code. Because of the finite beam size of the scanning
beam, the measured pointing error is quantized. This error
is used to generate pointing corrections, which can either be
calculated at the Earth station and then sent to the space
vehicle or calculated aboard the space vehicle after the
measured error is sent to the space vehicle from the Earth
station.
A block diagram illustrating the operations described
above is shown in Figure 5-2. In this figure x = xy + xg is
the actual pointing direction and y is the same pointing
direction but as seen at the Earth station. A pointing error
z results from a difference between the nominal beam
potition yy (i.c., the delayed value of xy) and the position
of the Earth station receiver y. If the correction signal is
generated on the space wvehicle, a delayed value of z
represented by a new variable, e, is received by the space
vehicle. Basad on ¢ and the point-ahead signal a new control
signal u is generated. -

51

In view of the long time delay existing in the grand
loop. the dynamics of the beam steering mechanism wiil
generally be negligible. Also, because of the long-term
delay, the ability of the controller to regulate against
short-term disturbances and errors is severly limitec. (These
will be taken out by the beacon tracking and attitude
control loops.) Only biasing and calibration errors and
long-term drifts can be accounted for by the controller.
Thus it is appropriate to describe the grand loop by the
following system of equations:

x(k) = Gu(k) + b(k) + ny (k)
b(k) = b(k-1)+n;(k-1)
y(k) = x(k-p)
k) = y(k)-yy(k) +n3(k)
e(k) = zk-p)+ns(k)
where k is the running variable indicating the k*" sampling
instant ty, = kAt, At being the sample interval; n, represents
the input noise to the beam steerer, n, the internal noise
accounting for the long-term drift, n3 the measurement and
quantization noise, and n4 the additional measurement
noise at the space vehicle; b represents the unknown biases
within the grand loop; G represents the gain of the beam
steerer; and p =T,4/At accounts for the one-way delay time.
Each noise component is assumed to have a zero mean, to
be uncomrelated from sample to sample, and to be
uncorrelated with other noise components. Recursive
substitution of the equations in Equation (1) gives
e(k) = Gu(k-2p)+b(k- 2p) + (n;(k- 2p) +n3(k- p)
+0400) - yr(k-p) @
Taking the difference of the error e(k) between successive
sampling instants gives the following expression for error
propagation:
ek) = e(k-1)+Gau (k- 2p)- Ay;(k-p) +wk-1)
where ]
Au(k-2p) = u(k-2p)-uk-2p-1)
Ayp(k-p) = yy(k-p)-yp(k-p-1)
Wk-D = [ma-2p-D+nyk-29)
ay(k-2p-1) +ny(k-p)
ask-p- )+ 10 -nalc- )|

m)

©)]
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It s seen that WK has zero mean, but it s correlated trom
sample to sample. However, tor small values of pore | arge
sampling intervals, the correlabion can be neglecied.

2. CONTROLLER DESIGN

The motion of the Earth stavon recewer Ay (k) n
Equation (3) is compensated for by the point-ashead signal.
Thus, if the presence of the noise term v(k-1) in Equation
(3) is neglected, the equation for error propagation
becomes

ek) = e(k-1)+Gauk- 2p) 4)

The system 1: designed so that the closed loop error
propagation can be expressed as

e(k) = fe(k-1) (5)

with {81 < 1 for stable operavion. Thus the controller
output must be

Auk) = C-e(k+2p-1y= G'(B-1) - e(k+2p-1)
2p-1
= C<e(k)+G z Au(k-i)) 6)
=1
and k
wi0= uk-D+AuK) = > AuG)
-

The control action at the k'™ ampling time is
proportional to the sum of the error at the k'™ sampling
time and the effect of the previous control actions during
one round trip time delay. By adding the effect o1 nrevious
control actions, overcorrection of the error is avoided.

3. INCORPORATION OF THE POINT-AHEAD INTO THE
CONTROLLER

The angular motion of the Earth station receiver
relative to the space vehicle is a time-varying function.
However, as shown in Figure 99 of Chapter 4, at Mars
distances the angular rate appears quite small. It will be
adequate to consider only linear motion, that is, motion in
which )

yr() = ao +(@:40k Q)

where ag is the relative position
a; is the relative velocity
- At = T4/Pis the sample time

The point-ahead signal tor thas case i

ulkr= G (a(, +ay(h+ p)Al)

= G (g *ajpadt) +(G e A0k (¥

where  uy s the pont-ahead part of the controller
ouiput

aj anda, are the estimated target position and
velocity

In equation (X), the first term on the righthand side can
appear as an intial condition for the control w(k) in

Equation (6). while the second term modifies Equation (6)
5o that

2p-1
Auk) = Cle)+G z Aulk - i)
1
and k) = u(k-1)+awk) +G'a)At

(&)

with  w0) = G'(a; +a)pat)

Here it has been assumed that point-ahead is initiated at the
first sampling instant. Since botha, and a; are small, the
angular rate a, can be neglected during the acquisition
phase. The error introduced can be readily estimated from
Equations (3) and (5) by noting Ayy(k) = @, At.From
these equations, the steady-state error is e = (1 -
B! ay At,which is the analog of the velocity error in
conventional servo theory.

4. THE CONTROLLER AS A FILTER

Since the controller is basically the discrete version of
an integrator, certain filtering action can be introduced into
the control loop by suitably increasing the sampling rate.
This can be shown by considering the one-dimensional case
as follows: Su, it is required that in the noiseless case a

pointing error € (0), which has been present till time t =0,
be reduced by time T to p¢(0),0< p<1.If there are N
sampling instants in the time period [ 0, T] , then designing
the system so that 2 (k) = 6 (k-1), where g N = p, will
meet the same requirement. It is apparent from Equation
(6) that this can be achieved by letting
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duth) - G D (dh G N auk ) o

In the case where nose s present. the measured error, ¢,
can be expressed in terms of the sum of the true etror ¢ and
the noise by the equation

dk) = k- 2p)+vik).
where v(K) represents the noise component. The round tnp

delay between the true error e and the measured error € 1»
accounted for by setting

p = NT/T

Equation (10) can be rewritten as

2p-
Auwk) = G"(ﬁ-l)(@(k-zp)w(k)m z Au(k - i)
i=1 (“)

Since the controt action begins at k = 1, and € (k) ='X0) for
k <0, the general form of A u (k) is

k-
auk) = G'@-1) p“"ﬁ(ow((ﬂ-l)z ﬂ"""v(a))
: il

+v(k) (12)
Consequently, «
N
) -w0) = 61| > I 540+ (8- 1)
k=1
k-1
> 0+ v
i=1
- g1 =E)4
G'@-1) 1-3)“’
(3. 11 %)~ (8- 1)
+
; a0

55

N
SN RTINSO IR Svinanp D
k=0
(811
¥l
dAN) - B e @ 1 SAVIN - k). (1)
k=0

Now assume the noise components (k) ere uncorrelated
and that each has a standard deviation g,. Then, letting oy
denote the standard deviation ot ¢ (N), one obtains

l_ﬁ!N
1-8?

ay = o(1-p)

I T LAY
v (i +8) (15)

or

—_—
(1-p)(1-p''N)

o
N
l+p"N

(16)

For 0<p <1, the expression (1 - p "N)!ll + p”N)is 2 de-
creasing f anction of N. Consequently, increasing the sampl-
ing rate ‘ accompanied by a corresponding increase in 8, that
is-a con.esponding decrease in the corntroller gain) decreases
the vasiances of the output.

If the noise components are correlated from sample to
sample, one cannot obtain as simple an expression as
Equation £16). However, when the correlation time is much
shorter than the sample time, the above argument remeins
qualitatively correct.

It should be noted that the filtering action is obtained
at the expense of additional memory storage required for
storing the previous control action during the Tq = 2Tq4
delay time and at the expense of more frequent controller
motion. Of course, a separate filter can be used if the higher
frequency of the controller action is causing undesirable
actuator wear.

S. EXAMPLE

To illustrate the effect of different controller gain
sottings and the effect of the different sample rates,
consider a simple one-dimensional example (the motions
X3X3 are decoupled) corresponding to a situation in which
the point-shead information is available, but a biasing error
exists in the grand loop. This biasing error can be caused
either by the long-tsrm component drifts and the
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cahibration ctrots o1 by the maccutacy an the poms ahead
imformation, Lot comemence, pet wat quantities age used
i bquations (1), (7), and ¢9) so that the svtem
parametess are

G= 1.0 b= 10, ay = dy. a, > a,

(tor perfect point ahead) and p = 1, and the imtial error i
-1.0.

The error responses for control settings { = -1 0, 0.9,
.75, 0.5, 0.25 for the noiseless case (ny =ny =ny = ng =
0) are shown in Figure 5-3. It is interesting to note that the
closed-loop response  with a  conventional  discrete
mtegrang error compensationfie., Au (k) = Ce (k)] 1
unstable for all the above values of C with the exception of
C = 0,25, Thas, by considering the delay time effect in the
controllet design, 3 much faster response tine can be
achieved (compire the responses of Figure S-3a and 5-3¢).
The pontahead 18 axsumed o be initiated at t =0, but ne
error s ndicated on the space vehicle until an error
detection is made at the barth station and returned to the
space wehicle, Thus, m Figure 5-3 an error indication first
appean at t = 2T, (T4 being the onc-way delay time). (For
p= 1, Ty is also the sampling interval.) This crror indication
does not change until ths time t = 4Ty which corresponds
to one round-tnp delay from the time of imtiation of
control action. This imtial ~rror response will be
independent of the controller settings. Subsequent error
response, however, is a function of the controller setting C
as shown in Figure 5-3. Thus the total error response time
can be separated inlo two parts; a gain independent part Ty
= 2Tq, corresponding to one round-trip delay time 2nd a

g dependent part T, which s the tune intenval between
the tmie when error begns to Ghange and the time when
the error becomes zero (lel<< o ¢ predetermined). In bgure
5.3, case (a), € -1.0, Ty =214 I, =0, and henee the total
response time is T = 2Ty, In case (¢), € 7 025, Td =~ M,
I. = 13Ty, and hence the total response tae s £ = 151y,

The effect of increasing the sampling tate s liustrated
m Figure -3, where a 10 percent (compared with Legy,y !
= 1.0) measurement nowse which s umtornty distributed
between 0.1 and 0.1 s asumed to oceur at the karth
station termunal. A compaison among cases (a), (b), and (¢)
in Figure 5.3 shows the effective increase in loop gamn by
noting that the error response for case (b), where p= 6 and
C = 025, 1 essentially the same as case (). where p = |
and C = {0.75. A comparison beween cases {by and (d)
Figure 5-1 shows the less pronounced noise response (i.c.,
the filtering action) in case (b) because of a decrease
controller setting from € = 0.75 to € = 0.25, while the
equivalent loop gain remains unchanged by increasing the
samphing rate fromp =1 top = 6.

Figure 5-5 and 56 illustrate system error responses 1n
the presence of both bias error and noise. The bias error is
the same as above. The noise components are either
uniformly distributed between 0.1 and 0.1 or are
Gaussian-distributed with zero mean and o = 0.05. An error
response behavior which is similar to that in Figure 54 can
be observed in these figures.

The controller setting C and the sampling rate p must
be chosen compositely to (1) achieve dcsired response to
system errors and (2) limit the control action because of
the presence of noise (thus providing adequate filtering
action).
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APPENDIX 6.
HETERODYNE COHERENCE AREA AND
ANGULAR ALIGNMENT

The general expression for i,zo was given in Section 6.3
of Chapter 4, Equation (32}. This rel~tion was obtained
from the knowledge that the photocurrent is related to the
aperture electric field by

Moe E?
1 = - 2—’
A

where E is the total instantaneous electric field at . The
total aperture field of course is a superposition of signal,
background, and local fields. Assume that each of these
fields can be written as

E@, 0=

-

xp(?, t) cos w,t +yp(?, t) sin w,t ¥)

(p = s.b,o for signal, background, and local, respectively)
and that x and y are statistically identical, but independent,
random variables with zero means. Writing the total electric
field as a superposition of the three component fields, the
sum may be squared and inserted in Equation (1) to yield
iphot. Among the components of ipnot is iso, Which is
expressed by

igo (%.) f |(X,xo+y,y.,)cos(w -wo)t

+(y,X, - XgY,) 8in (@, - @) tld’t 3)

Squmngandremnm;onlyﬂwexpectodnhuoftlw
time-sveraged portion ofi.,,leadstquuaﬂon(:iZ)m
Chapter 4:

- N0 3
Bo™ 2(‘,;:7) | I3E5s aver
AA

[Ch 4. Eq.(32))

6-1

Analogous forms describe the remaining mixing currents
(note that igy, etc., denote time-averaged, mean-square
currents). When the fields display perfect spatial coherence
and have uniform intensity distributions, Equation (32) is
easily evaluated and yields

3 e
ige= 2 —hv— Psl’o

as noted earlier.

Consider now the case in which the beam intensities
have Gaussian distributions:

xsz (3 .rz ’R: x: (T-S
Ps n= = Psme ’Po (;5 = A
2/R?
= Pom 0

Here Pgy, and Py, are the expected peak-power densities at
the beam centers. The correlations within the beams are
also assumed to be Gaussian functions

ey gl s

- Po(;;e -(a%)10},
where Ar = Tr-T'|, and the coherence aressa, = LA
anda, = :p;m (or cither of the beam areas
A, = wR). A, = #R), Henco variations in thepower

Ofn.ludp,mnm
wbuldhmtobo' AO%MP.(T
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With the foregoing assumptions, i,zo may again be eval-
uated in a straightforward manner to yield

2

- Mot -Ap/A aa,
-2 — —_— R'%r
i = 2< - > PsmPom (I -e ) oy Ar 4)

AA

o
. From Equation (33! in Chapter 4
A tA

s o
it can be seen that in this situation

where Ar =

The calculation here is simplified by the fact that the mini-
mum coherence area is <<AR. When the coherence areas
are smaller than, but not r:egligible compared to, Ag, evalu-
ating Equation (32) is complicated by the necessity for
including edge effects at the photosurface boundaries.

A more general form for i2) which includes the effects
of misaligned signal and local fields is

2
nNT,e IO —
i, = Acos a)(‘h:—z) / [ xs(;: t)x, @ .0
-> -> ->

-

xo DX cos Ky 1 -1 drdr  (5)

This expression is appropriate when the local field impinges
normally on the photosurface and the signal field
approaches at an angle a from the normal. K, is the nominal
signal-wave vector and the vectors r and T lie in the plane of
the photosurface. When ideal monochromatic plane waws
fields are assumed, the angular distance to the first nuil in
Equaticn (5) may be used to define 2, in which case it is
well known that '

l‘

- -— (Ch 4. Eq. (34)]
Ag

In the ideal caso, nulls in 12, result from destructive in-
terference among the incremental current contributions,
which i turn arise from the relative shift in carrier phase
across the full aperture. When the fields are not spatially
coheront, it can be assumed that the relative shift in carrier
m?xuummmm'mammﬂm
null ip  with the result that Q3 is given by
o R S

% = @

Hencc the ratio of the field of view of the partially
coherent heterodyne to that of the completely coherent
he:erodyne is

Q A

LA 7
minfa_, 3 } M

Q

coh

The dependence of heterodyne performance on
coherence area may also be understood from a slightly dif-
ferent (quantum-mechanical) viewpoint. As just noted, two
plane waves with propagation vectors making an angle
greater than about A/d do not interfere, on the a :rage,
over an aperture with linear dimension d. That is, waves in
distinguishably different transverse modes (or photons in
different cells of phase space) do not interfere.” Thus, the
area over which plane waves may interfere or the coherence
area, a_, corresponds to an angular spread 2 of propagation
vector ?or which consiructive interference takes place a =
A?/S2. The turbulent behavior of the atmosphere changes
(spreads out) the apparent direction of propagation of the
incoming wave. To calculate the signal and shot noise in a
heterodyne receiver, one must take into account the
number of spatial modes over which the signal and the local
oscillator waves are distributed. Suppose, then, that in a
given time interval one has s signal photons and o local
oscillator photons evenly distributed over N, N modes
respectively, and that these modes are spread out about a
mean direction of propagation which is the same for the
two waves. The mixing term. representing the communica-
tion signal, is proportional o

¢
b z Gsksok
k

mrqs’k=s/Ns,8°k=olN , and the summation is carried
out over all the modes which contain both signal and LO
photons. Thus, the mixing term is

min(N, N,)
NONl

$°0,
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The shot noise is just

M, z o Z by | = molots)
N N
o S

~
X

" o

assuming the local oscillator is much stronger than the
signal. The resulting signal-to-noise ratio is

(%) min(N_N)
sny =S\~ T —— nsAPt
hy NONS

where t is the observation interval. Now

AR AR
N = = ——
¢ )\2/90 3,

where (2 , a  represent the apparem solid angle and corre-
sponding coherence area for the local uscillator. This is

only the case, however, if Ay > a . since if Ap < a, the
local oscillator cannot be resolved by the receiver. Hence

ARiao if AR> a,

N, =
1 if AR< a,
and likewise
[ Agla,  if Ag >a
N = 1
S
1 if Ap <a

Thus leads to the following results:

Ap if Ag '”\'as<a0

7, a ifa <a, » Ag
snr = ——gt.
hv Ag if Ap< a <a
a ifao <a,, Ag
min[Ag a3 ] (8)

This is the result embodied in Equation (33) of Chapter 4.

i
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APPENDIX 7. HOMODYNE INFORMATION RATE

Cousidering the simple polarization moduiation scheme
(Figure 108, Chapter 4), the signal and LC fields at the
recejving aperture may be written in the form

V(T 1) = X(Dsin[wst + ¢4(1)] )
Vo, 1) = Xo(Dsinfwot + do()] ®)

The time dep2ndence of X and ¢ is suppressed, since thes?
quantities do not vary over a bit period (at least in kigh
data rate systems). Similarly the background field is
expressed as

Vp(r, 1) = Xy(f, Osinfwpt + o, 1)] ?3)

In Equation (3), the variation of amplitude and phase
over a bit period cannot be ignored.

The output of the PMT in the channel containing
the signal is

ia = M(istiotiptigHiso Figh tipotinsting

4

tinotindtitn/M)

Expressions for typical direct detected and mixed currents;
e.g., iy and is,, appear as

. [nmee Xo(r),.
l°-hu A 2Z d’r

e XX () . e .
e ()], 5y er

where it is assumed that the LO laser is phase-locked to the
incoming signal (w, - we = 0).
Assuming a strong LO, Equation (4) becomes
g ™iy +igo +ino tino Q)

The integrator output ) is obtained by squaring Equation
(7) and integrating, wnh the result

)

Ih = ool 2, +1,) 3 [ Gbo + taoMt

"'%.‘ j;’l‘ (ipo +ino)*dt \ (8

71

From Equaticn (8) one finds

- Lo [ Wary
l(zl = (lo'f'so)2 +fL (li)o

An analogous procedure yields 1% und taking the differ-
ence,

+ ]Z;) dt (9)

310)

Computing the variance of I3 and I} is slightly more
involved, but straightforward. The result for I3 is

2 41,5, ., . .2 I.T I - ,
o?, = —[i5 *+ 2ioiso * i50) /o ol tolbo * Inolno) dtdt
Ia T -
4 (1T ——
+'_.'f0[ lboi{so inol;md‘dt'
4 0
J' F(‘golbo l‘o ib2 + i3oind ~ ino lno) ddt’

(1)

Thke expression for 02|2p may be obtained by setting
isop = O (since it is deterministic) in Equation (11).
The sum of variances then follows directly from Equation
(11). Employing the Gaussian assumption for the inte-
grator outputs leads as before to

2 2

——— = P
“zm" K(Pe)

which, after substituting the foregoing expressions and
minor rewriting, yields an expression for the information

rate H:
a
1fs... ,bo)
E(%'“o‘so"":{)‘go

H = l o——
|28 + 2tk + 8% [T Vivoive * iolre) 1
2 (YT 7
*T l(; 0 iboibo inoino dtdt’

f f:é‘oibz il 8 + ol - o i) dut |

(13)

(12)
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For a sufficiently powerfur local cscillator, the con-
tribution from the heterodyned background field is domi-
nated by LO shot noise. Under these conditions, Equation
(13) may be written

.2 2
1 o E‘so
R~k 71— \g/e (4
f f i oy \7re
00

1
T

72

Substituting for the indicated currents, one finds

3
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APPENDIX 8. |
MIXING-TERM FLUCTUATIONS FOR DIRECT DETECTION

The classical limit for direct detection, in which mixing
terms dominate shot-noise terms, is illustrated in this
appendix. The signal field is assumed to have constant mag-
nitude, a, and to lie in a single spatial mode. The noise field
is characterized by orthogonal Gaussian random variables,
Xk, Yx@ (mean zero, variance ¢*), where k denotes the
temporal mode, k = 1,2, , ..., WI(=K) and € thespatial
mede, 2= 1,2,..., QrAR/A?) (SL).

The time-averaged cutput current is (omitting inessen-
tial constants)

| T
1= ?_/- idt
0
- K
o~ l 3
k =1
L
. - l_ 2+Y2 2 2
where iy = > (a+Xm) x1t (XxQ"YnQ)
' - . =2
As the same is true for all k, K may be suppressed, so that
=i
and
o? ,.'l'z_'z
1
= <0
- 2
- 4lF-

&1

L

1, 2 2
where i= Ela +2Xat Z (XQ +.YQ)
R'= 1 -

Calculating:

T 1
i= Eaz'fLa2

from which one identifies the average instantaneous signal
current

1
Iy = Ea’

and the average instantanecus current due to noise
l, = Lo?
Carrying out the indicated expansions, making use of the

orthogonality between noise ‘components from different
modes, and noting that X* = = 30% one obtains

012 = 0% + Lo?

2.3 LO‘
’rh 2=E_a_+—
us Ol K K

. ALY 62, (o)

KL KL
2y, I
= +
§2RAR QRAR
)\z xﬂ WT

which are just the expressions used for o3, a3 in the text.
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APPENDIX 9. PULSE-POSITION MODULATION

The binary polarization modulation scheme discussed
in this appendix requires on the order of 10/q7, photons
per bit of information. Under certain circumstances., it is
theoretically possible to design systems (see References 57
and 6! of Chapter 4) which are more efficient in terms of
energy use. The capacity of a noise-free optical signal has
been well understood since ). P. Gordon's discussion
(Reference 7, Chapter 4) of this problem. It was implied
that (for unit efficiency, n7, = 1) on the order of one
photon per bit is practical and less than one photon per
bit is not proscribed theoretically as long as one is willing
to sacrificc large amounts of bandwidth; i.e., when the
information rate is small compared with the bandwidth. If
€ is the number of photons ger bit, C the capacity, and B
the bandwidth, Gordon’s work shows that

1 e

¢ (€< 1)
— R ——— —— €
B In2 € )

It can be seen that C/B decreases rapidly with decreasing
€. If this is not a-severe practical restriction, as in the
present considerations, one can hope to achieve small
values of €. This is in principle what can be done with a
PPM systenr, in which the signal bandwidth increades to
produce narrow pulses. A crude analysis of a simple
example of such a system, presenting the essentials,
follows, '

In an interval of time T, a single pulse of duration 7
is transmitted in one of m = T/r positions. At the
feceiver, which is assumed to be synchronized, one
decides in which of m positions the transmitted pulse
occurs, so that the information rate is log m/T bits per
second. Assume that the average energy of the
transmission can be convested to pulses without loss, so
that effectively the signal power in the time interval r
(during transmission) is given by P, = P,T/r = Pym, If m
is large enough, this will be much larger than the
background radiation power; hence, it may be possible tc
reduce P; at the expense (increased bandwidth) of

increating m. At tho same time each pulse contributes log
m bita rather than one.

In the PPM system, there are two types of error. In

the interval during which the signal pulse is transmitted, it

~ *T. Curran and M. Ross, Proc. IEEE, Vol. $3 (1968), p 1770,

is possible that one fails to detect the signal. in sudition,
there is a false alarm error when the backgronnd noise is
large enough to make it appear that the signal is present
in some interval when, in fact, it is not. At the receiver, a
threshold level is set to decide between signal prestnt or
not present. A failed detection error is made when the
net signal plus noisc fails to exceed the threshold. Assume
that the signal is polarized, that thermal noise and dark
current can be ignored (i.e., a PMT may be used), and
that the output of the time integrator (or base-band
filter) is Gaussian. Then considerations in Section 5.7 of
Chapter 4 imply that the post-detection integration time
T required is given by

P
121.0 sm

I
K B2

1+ —
Pm

1.
T

where k;, is determined from the desired error probability
and the threshold level, and only half the background
power produces shot noise since the extrancous
polarization may be eliminated at the receiver.

Selection of the threshold value, which in turn will
determine kj, for a presset error probability, is amenable
to analysis* but beyond the scope of this appendix. It
will be assumed instead that the threshold is sufficiently
high that the total falsealarm probability (for all slots
which do not contain the signal pulse) can be neglected.
This means that the foregoing rclation determines the
information rate but that k, will be somewhat higher

than in the binary polarization scheme. The information
rate becomes

- logm - logm

T msr
or n,oP, )
logm W
kK RA
] & wm————
Pm



One can solve for the signal power required

and, in turn, for the number of photons per bit

P

S
€ T e——
PPM he4

P
nT ® Jlogm

¥)

‘PP~ logm 4 2k W H m

For comparison, from Equation (41) one has

kp th "f Pb

1
khv H

for the binary polarization modulation where kp (D
denoting direct detection) is the constant which depends on
the desired error probability. The corresponding number of
photons per bit is

e=le+ l+n1b ! 3)
D 2 4 H

[-H/ S
2 @
P k .lom

A detailed companson of power efficiencies depends,
of course, on the number of pulse positions m, but also
on the ratio of H* (which is proportional to the average
rate of generation of photoelectrons due to the
background) to the information rate H, For a recewer on
the ground, H* may be quite large. For example, if A =
0.5u. considering a 25 square meter receiver which is
atmosphere-limited with Qg assumed 10°® sterad, letting

= 5§ x 10?2 taking a i-angstrom predetection filter
and letting kp = 10, one finds H* = 2.4 x 107 (sec’!).
Now, suppose H = 108 bits/second, and assume kp - kp
(as remarked earlier, kp will usually be somewhat
smaller). Thus, Equation (4) becomes approximately

b _ log m\/iz

SV 1 logm
-ty [ —+ 12
2 4 m

The following table shows the power gain (in dB) for the
PPM system over the binary system for this illustration.
Instead of m, the parameter chosen is the pulse width 7 =
10¢/m,

7(S)  gain (dB)
io? 8.0
108 13.2
10°° 16.4

It can thrrefore be seen that the potential gains are qu
significant. Note that pulses shorter than one nanosecc. -
do not appear to be feasible (see Chapter 4).

One should bear in mind that the calculations (which
are approximate) assume that tiiere is no loss in average
power incurred in going from the CW laser to the high
peak power system. This is 2 key assumption and
probably overestimates the power advantage of PPM
somewhat. Also, assuming that comparable signal-to-noise
ratio is required in both systems, (kp ™ k) is s0raewhat
favorable to the PPM system. Qualitatively, however, the
results indicate that there is considerable potential benefit
to bo derived in the PPM system, despite the additional
complexity of modulation and decoding, if the power
trade-off between CW and pulse operation car be made
without too much loss in average power.



APPENDIX 10. CANONIC MISSION-MARS ORBITER

This appendin provides the supporting proofs and
additional details tor the material presented in Chapter 0,
Section 1. In this appendix, a series of topics are considered
which dictate how certain choices of orbital parameters
aftect ovhatal properties important to communication. The
results are presented m the simplest meaningtul manner, but
in each case the extensions necessary to obtuin more de-
tailed results will be clear.

1. FRACTION OF TIME A MARS ORBITER IS
OCCULTED BY THE PLANET

At typical Farth-Mars distances (say, 1 Al) it is
immatenal whether it is assumed that the Mars orbiter is
being viewed from an Earth station on the ground. at
synchronous altitudes, or even from a libration point
tracker. In addition, it may be assumed that the planet casts
a cylindrical (rather than conical) shadow at these
distances. If a Mars-centered equatorial coordinate system is
considered,* and the radius vector to the satellite is
expressed as T and the unit vector towards the Earth as e
then the satellite is occulted when

>
r e <-/r*-R? ()

where r = |r| and R is the Martian equatorial radius." This is
a special case of Equation (16) in this appendix, valid fo. .
conical shadow, which is derived in Section 7 and illustrated
in Figure 10-6. Assume that the Farth is located in the x-z
plane (this merely provides a reference for the orbiter nodal
angle, ), at an angle eMbelow the equatorial plane, neg-
lecting the difference between the ecliptic and the Mars
orbat plane (~2°). Finally, assume that the orbiter is in a
circular orbit. Then Equation (1) becomes

Acosf +Bsind <-$ 2
where
= cos Q cos €M
B = (sinQ Cos i COS €), *+sin isin€,)
5 = IhaZR + h)l”kl{% h). )

——

4F .« timo intervals of the order of soveral orbiter periods, this is
umed to be an inertial system.

1300 Reference 1. Tho procedure in generzl i« to obtain entry and
exit anglos by a numerical iteration procedum, which converges
rapidly when start: 1 with values obtained from Equation (1).

10}

The orbiter altitude and inchnation angle have been
denoted by h and i respectively, and J represents he
satellite’s angular position in the orbit plane measured from
the nodal crossing. The angle €y s variable (from 2§
degrees to -25 degrees, over a period of about two years).
Computation of €y as a function of time of year is possible
using sume simple formulas given in Sectior 8 where a
narticular occultation problem is treated from a somewhat
different point of view. Here we will simply consider
sample results for a specific value of €.

The actual entry and exit angles are obtained by
replacing the inequality in Equation (2) by an equality.
[ Also, the angles at which the satellite enters the portion of
its orbit directly in front of the planet are given by
Equation (2) with + § on the right hand side.] The fraction
of time for which the satellite is occulted is given by

f, = ¥/n 4)
where

cosy = 5 (A7 +B7)H ©)

since time and angle are linearly velated for circular orbits.
A computer program to evaluate f; using Equatio.: ¢3) to
(5) with ey = 25 degrees was used to investigate vaiues of
Q from O to 180 degrees, i from 0 to 180 degrees, and h =
0.5R, R, 1.5R, and 2R. Actually, 2 can vary over 360
degrees, but the results for  >180 degrees can be obtained
by 1eplacing 2 by Q + 180 degrees and i by 180 degrees -i
in Figures 10-1 to 10-3 where the results are tabulated.
[ This is to be expected on physical grounds and can also be
seen by exauiination of equation (3).]

Even with all the simplifications that have been made,
a four-parameter problem(S2, i, h, €y) remains. Actually,
the various restrictions (to a circular orbit, cylindrical
shadow znne, fixed Earth, spherical Mars, etc.) are easily

removed in any particular case,t but so many parameters

are then present that it is difficult to present the -esults in a
meaningfui manner. Some general statements can be made
about Figures 10-1 te 10-3. For given Q and i values, f,
increases with decreasing h until f, ~ 0.5 for the liriting
case of h =0, Also, for any Q or h, there is an i fr which

-fy attains @ maximum or minimum (or a range i for

which f, = Q).

ik
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FaanueLten of Fguitions (3t (5) dhoas
i extremized when

that 1,

tan b = Zhitac) . (Lhgnan
where
= 2 )ered
a = an’ {lcostey
b = sinflcosey siney

c sin’eu

For k>0 SR, it follows that 0<€,</0. 25 Note that 2
will vary by perhaps 360 degrees per year? because of
Martian oblateness 2nd also because of the motion of the
Earth and Mars about the Sun; therefore, these graphical
results are valid only for time intervals of the order of
several orbiter periods. Furthermore. since these particular
graphs were drawn for €y = 25 degrees, they are vahd for
time periods when this is so, although of course graphs
could be drawn for any time period by varying e.

In the above discussion, the line of sight to the Mars
orbiter is assumed not obscured by the Earth. Loss of
visibility may occur for up to 50 percent of the time for
trackers on the Earth’s surface, up to 5 percent for trackers
at synchronous altitudes (see Section 8), or up to 0.6
percent for trackars at the Earth-Moon libration points (see
Section 4). It can be avoided by redundant trackers (with
attendant handover problems) or by schedules that avoid
occu:iation during periods when communication is
particularly important.

2. FRACTION OF TIME MARS IS WITHIN THE BEAM
OF THE EARTH TRANSMITTER

To theé order of approximation employed in Section
1, the fraction of time that the satellite is in front of the
planet is equal to the occultation fraction. Thus,

f2 =~ f, +5f ] (6)

where 8f is a correction due to the finite beamwidth. The
- additional angulur travel during which the beam sees Mars
in back of the satellite is approximately

jo

20 = Wgb/(R+h) )

where Rg~ 1 AU and b is the beamwidth. Thus Rgb is the
. distance subtended by the beam at Martian distances. For
~ typical - values, say Rgba 500 miles (b~ 0.5x10°
radian~ 1. arc second) md h = R we have
ar- 60/:"0.038. S '

: oelud-

Actually | quation €73 chould be ysed 1o woe the rewlts
of sangtions an boand by orather than Fquaton (63 10 set
mcdl natire of the
shadow i Scchion | of at least comparable importance
to the correct:on for fumte beamwidth (see Section ).

eandel ansaers, waee the negiect of the

3. MAGNITUDE AND VAR!ATION OF DOPPLER SHIFT
The doppler-frequency it 1s usuzlly defined as

S=-=V, (R}
[
where v is the frequency of radiation emitted from the
source, ¢ is the speed of light, and V,, is the component of
velocity of the radiation along the line of sight from the
source te the receiver. It is simplest here to replace
Equativn ¢ 7 with the equivalent expression

v d -

c dt

where 2 is the vector from source to receiver. Equation (¥)
must be evaluated for the case in which the source is the
Earth (revolving about the Sun) and the receiver it 3
satellite orbiting around Mars (also revolving about the
Sun). Assume that the Mars orbit plane coincides with the
eclipuc. Then, if an inertial heliocentric ecliptic system is
considered with um( vectors &, 9 £ and radial unit vectors
are represented by 7, the Sun-Earth vector can be expressed
as

rg = nhy = rE(f( cos 0 +93in0E) (10)

Simiiarly, for the Sun-Mars vector

;;1 = 'M?M = Iy (ﬁcosom +§'\sin0M) 1))

 In Equations (10) and (11)

) t 2n rnd 0 n- t 2
= n B evem . = S emew
EC e B, MO

whore the orbital eccentricities of the piaets are nc_slected’
and time (t) is measured from an Barth-Mars opposition.*

. Mean motions (angular velocicies) and sideresl periods are o
~" déndted by n and P with subscripts € and M for Earth and -
-Mars. . or;Impllclty uken rg "l AU nnd Pg -1 ym T




umts of distance and tie Then gy - 1 823679 gad
Pag = 1 %2089 Now we can represcit the arih-Mar vect
'.l ap ot
. - N .
= s . = iy ¢
I' \ XV li i\ )
P . e )
A Ty o ()“ u“(l
- hl
h = Ty sin (?“ -un 0I (12)

Now the vector P from the Earth to the orbiies s the surr
of T and 1 where r represents the orbital mohun of the
orbiter .uuund Mars. It is convenient te express 7 in the
inertial K. . 7 .sstem (translated fo the Marscenter). Thus

r o= xxtyytzl

x = tflcus §2 cos @ - sin € sin 0 cos i)

y = rsin 2 cos @ + cos § sin @ cos i)

z = -sinQsini (13)

For citcular orbits, r=R + h and 0 = nt + 6, where n is the
orbiter mean motion and 8, is an imtial phase angle. Noie
that the elements in Equation (13) are not the ones
discussed in Section 1 in which an Earth-pointing Mars-
centered equatorial reference system was considered. Ele-
ments in such a rotating reference system cannot be
considered constant. even in the absence of perturbations,
for time intervals of the length now being considered.
Combining Equations (12) and (13) gives

; = (a+x)ﬁ+(b+y)9+zﬁ.

For use in Equation (9), it is necessury to compute

o 1| _d d L.
- T|(a+X);;(ﬂx)+(b+y)j‘-‘-(b+y)*zdt (14)

New Squations (9), (12), (13), and (14) can be evaluated

- numerically for any particulas-csse. Note that the orbital
_‘'motion of the Mars satellite should make the maximum
contribution t0'S when the orbital phno coincides with the
ecliptic. lnthllem(i-O n-()).x- tcow. y-uan,
md z2=0. . .

Thu..

l\!

i
i 1 1L = an
3 )

—f{g+t) = In

+an Ul
! |

A

Ty
=(bty) = lmj==cosly -cos @y
1 Py

'
+—=cocl)
p

Insertion of numenical values yields

— ~ 0.810

— = 1.000

T 6200 miles AU *
- o~ e—————— A () GO —
P 32400 seconds year

Thus small errors are made in general by neglecting the
orbater mouon Note also thata+ x =a,b+y=b,andp =
(a® + b’) =1d + 1 - 2ycofly - 0). Equation (14)
produces, after some simplification,

dp - A sin wt
dt 1-Bcoswt

21, (14P,)

A= ~ 4.4
PM(I +:?M;

2r
M
B= — 0.917
l+t“

1
we 21!(—- -1)~ mospy e (15
| Fu -

lt is seen that 8 is approximately poﬂodlc witha pcrlod

“of 2 years. Figure 104 plots dp/dt va. 0 = wt. The

maximum : do/dt ocours at 23.5 degrees (sbout 1-1/2-

" months after opposition) and is 11.1 AUJyear, Since the

units of dp/dt ‘are AU/year, they must be divided by.

" 6= 186,000 miles/sec = 6.31 x 10% AU/year, to obtain the
“maximum fractional shift (1/c do/dt) of 1.76.x 10% or
- __about-2.0 x 10,
m«mmaors‘ -

v to obuln

mmumupmsy
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Figure 104, Variation of Doppler shift with time

107 -




s

A rough dea of the magniude of the neplected orbita
moetion van be obtamed by coanidenng a oircular orbit
the echptic. Then the largest value of Vi, [see equation (%3]
15 just the orhatal veloaity, which for a typical satelhte with
h = 2R s about 0.4 AU/ycar. The small oscillaaons of thi
magnitude at most {with penod of about 16 Y years or w t
2 ().2 degrees) siould be superimposed on the curve n
Figure 104,

4. VISIBILITY CONDITIONS FAKOM A TRACKER
SATELLITE SITUATED AT A TRIANGULAR Li.
BRATION POINT OF THE EARTH-MOON SYSTEM

A complete analysis of this subject would be a rather
complev three-dimensional preblem, since the Mats orbit
plane and the Moon orbit plane are inclinzd to the ecliptic
(by about 2 degrees and 5 degrees, respectively). However,
an upper bound can easily be obtained on ihe fraction of
time for which a probe is occulted by consideiing the
problem in the ecliptic plane. The results shouid he
conservative since the slight non-planarities will tend to
destroy any colinearity {tracker-Mcon-probe or
tracker-Earth-probe) that may occur.

Consider Figure 10-S. The Earth and Mars revolve
around the Sun with periods of 1 and 1.88 years,
respectively. The Mocn and the libration point tracker
revolve around the Eaith during 27.3 days.* A typical
Earth-Mars trajectory takes on the order of several hundred
days. Thus we can approximate the situation by assuming
that the Earth and the probe are approximately fixed
relative to each other during one revolution of the
Earth-Moon system. Then the fraction of one period (i.e.,
of 27.3 days) that the probe is occulted by the Moon (see
Figure 10-5) is the angle subtended by the Moon at the
tracker divided by 360 degrees. (In Figure 10-5 a time of
occultation of the probe by the Moaon is about to occur.)

The tracker-Earth and tracker-Moon distance is
239,000 miles for a tracker at a triangular libration point.
und the Earth and lunar radii are 3970 and 1080 miles.
Thus the angles subtended are 1.90 and .52 degrees by the
Earth and Moon, corresponding to 3.5 and 0.9 hours of
occultavion per month, This is about 0.6 percent of the
time.

Since the angles subtended by the Earth and Moon are
comparable or smaller than the skewness of the various
orbit planes, which has been neglected in this discussion,
one would expect these out-cf-plane effects to cause a
considerable reduction in our 0,006 maximum occultation

' SActually, ths rotation is around the Sarth-Moon barycenter which

is within the Earth. Thus the order of magnitude arguments are not
sffected.

fraction. Actuaily these few hours per month are neghgible
unless  they  oceur at times when  commurication 1
necessary, - which cases they can be avorded by proper
scheduting or redundant trackers,

5. VISIBILITY PERIODS OF A MARS ORBITER
RELATIVE TO A SPACE PROBE APPROACHING
FROM EARTH

If space probes approach Mars in the ecliptic plane,
then the results of Section 1 (i.e., Figures 10-1 to 10-3)
are directly usable, with §2 representing the angle in the
ccliptic between the probe-Mars line and the orbiter nodal
crossing, as long as the probe is far enough from Mars for
our sssumption of a cylindrical shadow to be valid. A more
general  direction of approach could he handied by
returning to Equation (1) and letting € represent the unit
vector towards the probe.

As the probe approaches the planct more cluseiy, the
assumption of a cylindiicai shadow becomes worse.
Eventually, one should replace Equation (1) with

T-8<aR- (I} (?R?) (16)

wherea = R/d is the ratio of the Martian radius to the
Mars-probe distance. (We derive (16) in Section 7.) For
moderate distances Equaiion (16) can be expanded in a
series in a. Then the extended version of Equation (2)
becomes

R
Acosa+usino<-a+-a+-2-5a’+0(a‘) an
r

where § = (2R + h) /3/(R + h) as before, For >xample,
for h = R, § = 0866, and the correction ternis are
negligible until the probe is within a few hundred Mars radii
of the planet (d < 0.01 AU). The effect of the app:roach is
to increase fy, as might be expected, and can be simulated
in Figuree 10-1 to 10-3 by considering the curves for lower
aititude orbiters. Consider as an example a space probe
when a = 0.25, i.e., at 4 Mars radii from the planet. For an
crbiter with h = 2R

R 1
S+ —a+-5- §a® ~ .0.830
| 4

compared to 5 = 0,943, Since § ~ -0.866 for h = R, the
curves for h = R in Figures 10-1 to 10-3 give approximate
values of fy for a probe at a distance of about 4R and an
orbiter at an altitude of h = 2R, Similar approximations
could be made for other distances and altitudes, or
Equation (16) could be used directly in each case.
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6. PAYLOAD CONSIDERATIONS FOR
MISSION

MARS

The useiul pavload which van be placed near the targe:
planct is dependent on the ty re of mission planned and the
available booster and vehicle capability, as well as the
mission date, and many other factors. Here several of the
broad clesses of possible missions can be listed and
references provided to recent samples or the voluiminous
literature.

6.1 One-Way Flyby>

The probe is launched from Earth or Earth orbit into a
heliocentric ellipse past Mars. No primary propulsion is
required after Earth departure. This mission’s main
advartage is its (relative) simplicity as evidenced by the fact
that several have already been flown.

6.2 Capture Mission>

The probe is made to impact or soft land or orbit Mars
by atmospheric or propulsive braking out of the heliocentric
transfer ellipse.

6.3 Round-Trip Nonstop Flyby?

These are the interplanetary equivalent of lunar
free-return trajectories. The features of this mission of
interest for commurications purposes are close rauge
encounter with the target planet coupled with a return trip
during which stored data could be transmitted at relatively
low data rates. It is also attractive for an early man.ed
mission. The so-called “powered flyby” in which thrust
near Mars is used to augment the effect of the Mar.ian
gravity is a variant of this mission. Timing flexibility .-
gained at the expense of additional complexity.

6.4 Round-Trip Captute or Stopover®

These are conceptually simple extensions of the
nonstop flyby in which some stopover time on the planet is
allowed for in the mission profile.

The above mission classes are basically “ballistic”; that
is, only high thrust impulsive propulsion is used during the
mission, (In addition, midcourse guidance corrections to
reduce errors in the iinplementation of the impulses would
always be required in practice.) Thus minimization of fuel
consumption is theoretically equivalent to minimization of
instantaneous velocity impulses.

More compisx mission types can arise from the above
in several ways, One i» the allowance of non-impulsive
thrust during the mission. For «xumple,® continuous low
thrust may be used during the entire mission either without

mpulsive thrust capability orin o omjuncaon with it {(mixed
or hykrid thrust),

Additional variations are offered by multiplanet flybys
or swinghy mussions. For example.® the gravitational field
of Venus n +y be used on the inbound and outhound legs to
deflect the probe’s tragectory so that acceptable stopover
times on Mars are possible ol otherwise unfavorable datcs.
One may consider still morc compiex combmations such as
a powered flyby of Mars (preceded by a Venus swingby)
du.fag which a manned excursion vehicle is landed on the
Martian  surface and then recovered by the main
spacecraft.” These more complicated missions offer large
theoretical tuel savings and/or timing flexibility at the
expense of increased complexity.

A relatively simple combination of the basic types,
namely a capture mission in which a spucecraft is put in a
Martian orbit, followed by a round-trip nonstop flyby
offers interesting possibilities of accurate mutual orbit
determination between the probe and the orbiter.

7. VISIBILITY CONDITIONS BETWEEN A MARS
LANDING VEHICLE AND A MARS ORBITER

Consider the situation in the plane defined by the
-adius vector to the orbiter (r) and the unit vector {€)
towards the lending vehicle (LV). From a consideration of
Figure 10-6, it can be seen that occuliation occurs when

Te>x (18)

that is, when the projection of T upon € is greaier
magnitude than x, and in - 'dition T and € point towards
opposite sides of the occulting body. From Figure 10-6 we
see that

x+d= (y+z)cosA
y = (rZ.RZ)I/I
z = (d2_R2)lﬂ
cosA= z/d (19

Using Equation (19) in Equation (18) we obtaia the
occultation condition of Equation (16), which we repeat

r € <aR- J(1-a?)(*-R?)
a = R/ ‘ (16)
[Note that the expression for a cylindrical shadow, (1),

follows immediately from Equation (16) for & = oo, je,,
a+0.)
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The components of the vectors roand ¢ can he
expressed o wny converrent coordmate <ystem for toe
determmation of oceultatiog tractions m terms of orbr.al
parameters, as 10 Section |

The situation after the vehacle has landed is described
by setting d = R so that « = 1 m Equation (16). Thus the
condition for occultation becomes

-

ree <R (20)

where € 1s now the umt vector towards the landed LV.
Since the LV may be on the surface for many orbiter
periods 11 1s convenient to express Equation (20) 1n terms
of orbital parameters and LV coordinates. Thus, ronsider
that T and € are cxpressed 1in a Mars-centered equatorial
coordinate system. Then

r; = r(cos S2cos0-snflenfcos)
r; = 1(sin £ cos 8 + cos§2 sin € cos 1)
r3 = isinf@sni

e; = cos(atwi)

ey = swfatwt)

€3 = sinéd

@n

where a is the LV longitude in our coordinate system at t =
0, § is the latitude, and w is the Mars rotation rate. For a
circular orbit,® =ntandr=R + h,

As an example of the use of Equations (20) and (21),
consider a satellite at synchronous altitude, h = hg i.e., such
that n = ng = w. For an equatorial orbit (i = 0), with the
satellite at t = O above the LV (2 = a = § = 0), Equation
(20) becomes

cos wt * (R+hg )cos ngt + sin wt - (R+hg)sin ngt <R

or

cos(w-ng)t < R+hg

for occuitation. Since w = ng and hg > 0, the LV is always
visible from the satellite, as of course it should be in this
case. More complex cases may be treated directly from
Equations (20) and (21), and occultation fractions may be
found as in Section 1.
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R. VISIBILITY OF A
SATELLITE FROM AN
SATELLITE

MARS SYNCHRONOUS
EARTH SYNCHRONOUS

It ha. been shown previously that under certan
conditions a Mars orbiter would .ot be occulted by Mars
for at least several orbiter periods, and thus will remain
visible from the Larth if occultation by Mars alone is
considered. Of course, in practice occuitation by the karth
must also be considered. In Sectior [, an casily obtamed
L.pger bound, was noted, namely that occultation by the
Earth when viewing from a Earth synchronous satellite
occurs at most 5 percent of any given day.

It is of interest to know whether, as one might expect,
there are extended periods when no occultation occurs and
continuous communication 15 possible. Although purely
geometrical, the problem s somewhat involved and the
proverbial slide rule estimates cannot be relied upon. The
situation is and!vzed in the foilowing sections.

8.1 Visibility of Mars from an Earth Synchronous Satellite

Consider a heliocentric inertial system with axis x°
pointing towards the first pont of Ares (7), 2’ normal to
the cclintic (directed north), and y’ in the ecliptic such that
x’, y’, and 2’ form a right-handed system. (See Figure 10-7.)
Thus the x’ - y’ plane is e ecliptic plane. The Mars orbit
plane intersects the Earth orbit plane in an axis X, an angle
Qu from 7. The orbit planes are inclined at an angle iy.
Denote the angular distance of Mars from x in the Mars
orbit plane by 8y and the angular distance of the Earth
from x in the ecliptic by 0g. Assume

e (22)

where ny and ng are the Martian and terrestrial mean
motions. Equation (22) assumes time is measured from an
Earth-Mars opposition, i.e., when both are on the x axis.
These occur approximately every 2 years. Denote the
Sun-Earth and Sun-Mars distances by pg and ppM,
respectively, and assume them constant. (The quantities
defined so far are illustrated in Figure 10-7, the Earth,
Mars, and the Sun being denoted by E, M, and S
respectively.) At any moment the Earth’s equatorial plane
is inclined below the ecliptic an angle e.




/— MARS ORBIT

Y

EARTH ORBIT

EARTH 'S
EQUATORIAL
PLANE

Figure 10-7. Orbital geometry
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- "2 1*Not visible™ means not coatinuously visible.
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e cocrdinotes minsg be obianned o7 20
distence o3 covrdmate vleam VT
and v he o othe Lands equatonial plane and 27 pomnis 1e

the Vo, Pede. Finst note that

P\ﬂ
= — cos '.f-“ - COos '.‘-'}
¥

fu
o o - <in B
o= ; S“!g.\l COS 1y - Sin G
1

Py

- - - - Yy
Z = —sin FM LR (231
s

where x_ y. and = ate the components of the Earth Mars
distance i astronomical units. The x°, y*. and z° system is
obtained from x, y, and z by a counterclockwise rotation of
S\ around z. Then x™.y”, and - ~ are obtained from x, y’,
and 2" by aclockwise rotation of € around x°. Thus

"
0

X cos 24 -y sin
y = cose(xsin 2, tycosQ )-zsine

sin €(x sin 2y +v cos 2y ) +Zcos € (24)

N
1}

and x”, y”, and z” can be ccnsidered te be the coordinates
of Mars in an Earth-centered equatorial coordinate system.

. Now consider an Earth-synchronous equatorial satellite
S, in Figure 10-8. S; i a distance 1, from the Earth which
subtends an angle 24, at S,. The coordinates of Mars (x™2
+y"2)1/2 2" arc approximately constant during on. day;
during this time the shadow cone (vertex at S, , vertex angle
2¢,) sweeps out the solid of revolution whose cross section
is shown in Figure 10-8. For continuous visibility M must
be outside this region, 0,

Z2"1> lr’ +(x"+ yn)'”l tan ¢, (25)

© A dlwinﬂgo(l mwmsss.zs_moays.a

about 1 day.

avaluate Fouations €225 10 123) was prepared and

the ollowing

1043 , Do

bquenion 125} 1o e mequality dependent upon t

tirough Fquations €221 10 (240 A computer program e

fun with

SOBSLENTN

i‘\,

— = 1LiM

2y

Ty X

—— = Y. 3%

nl

e = 185

Dy = 49.33° (epoch 1971)
€ = 1345

., = 0loxi107 AL
o, = 815°

The results as a function of 8 are*

0° < 8, < 252°- visible for 252°

253° < @ < 313°: not visible for 60°+

314° € 6. < 506°: visidle for 192°

507° < 8, < 571°: not visible for 64°

572° < 0 < 950°: visible for 378°

51° < 0, <i013°: not visible for 62°

etc.

8.2 Occultstion of a Mars Orbiter by Ma-s

Consider a Mars-centered inertial system with the Z
axis pointing north along the Mars axis of rotation, the Y
axis along the intersection of the ecliptic and the Mars
equatorial plane, and the X axis complet'ng the
right-handed system (see Figure 109). The ecliptic
intersects the X-Z plane in a line an angle €) below the X
axis where em = 25 degrees. (The inclination of the Mars
orbit plane to the ecliptic, iy = 1.85 degrees, wili be
neglected in the calculations.) A unit vector € pointing in
the Mars-Earth direction makes an angleac with the X-Z

Ammetlutllmusuacylmdwddudow,thusthe

‘atelllteuoowltedwhen ) g

r8o. ViR © (26)
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Figure 10-8. Visibility geometry
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where 1 is the radius vector from Mars to the satellite. 1 =
irl. and R is the Mars cqucto -l radws. The vector ¢ has
components

¢, T COS €y COS OP

2. = sin BF

e, = -sin€y cosfy N

in the system M-XYZ. Similarly the vector T is expressed as

r{cos §2 cos 8 - sin £ cos i sin 8)

-
]

r(sin §2 cos @ + cos £ cos i sin §)

-
it

-
"

rsinisin @ (28)

where the angles §2, 0, and i specify the direction of T as
shown in Figure 10-9. Using Equations (27) and (28) in
Equation (26), the occultation condition is*

Acos@ +Bsinf< -6 29)

A= <:oseM‘cos5E cosﬂ+sin§5 sin Q
B = -cosey cosOEsinﬂcosHsinOEcosﬂcosn

- sin €y, cos()l£ sin i

5 = R—:_—l-‘[h(2R+h)]% (30)

The altitude h in Equation (30), given by h=r-Ris a
constant if the orbiter is in a circular orbit, as assumed
below.

*Equaticns (29) and (30) correspond to Equations (2) and (3) of
Section 1; however, they are equivalent only when U = 0. Thus
the mhlcllnmlu for f, buimdinSecdon 1 are valid only fur
petiods of time ar-und Ug= 0. Results for other time periods
mubommedmhluﬂybynphdn;eu Section 1 by an
angle € ‘such that

sine' = sin ey cosf

The actual angles, 8. for shadow-zone entry and exit
are given by replacing the inequality in kquation (29) by an
equality. The occultation fraction is given by

[, = —= 31)
m
where
cosy = & (A’+B’)'” (32)

For the case of equatorial Mars orbiters, using i = 0
it Equation (30),

2 2 = unlp 2 23
A +B sin OE+cos €)g COS GE

Thus occultation never occurs when
RV .
- ;2% 2 27
1 - > sin OE +cos” €, cos GE

fcos g1 >{R (R+h)sin e )! (33)

or when

Note that there is no h for which occultation never
occurs. However, the period of the year (i.e., region of 0g)
can be found for. wliich there is no occultation for a given
altitude satellite.

8.3 Continuous Visibility

For continuous visibility, Equations (25) and (33)
must be satisfied simultaneously so that the Earth
synchronous satellite can see Mars without being occulted
by the Earth, and the Mars synchronous satellite is visible
from the Earth without being occulted by Mars. To check
the simultaneous satisfaction of Equations (25) and (33),
O as a function of g must be known.

Referring to Figure 10-10, the orientation of the
normal to the Mars equatorial plane, line SN, is given by
right ascen..on and declination angles, a, and §,, with
respect to Aries and the Earth’s equator where”

a, ~ 317.93°

5, ~ 54.73° (epoch 1971)
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The onentation of the line of tersectior of the Marss
equatonal plane, SN and the echipic can be defined by an
angiv 8. measured in the echptic from 7.

The direction cosines of SN are

cusd cosa . ¢ i
, o SO @ Cos 60 sina . sin bnl

those of SN’ are

cosf.sinfBcose sinfsince !

The orthogonality of SN and SN’ can be used to obizin an
expression for tan §, namely,

Cos (10

tan3 = -
cos € sin a_ +sin € tan 60

yielding g = 85.98° *
Ncw consider the following direction:s and angles in the
ecliptic (see Figure 13-11). Let

v indicate the direction of the line of intersection
of the Earth’s equatoria! plane and the ecliptic.

A indicate the direction of the line of intersection
of the Mars equatorial plane and the ecliptic
(i.c., adirection parallel to SN’ in Figure 10-10.)

a= 0O -90 degrees be the angle between A and the
M-E line

N 4 be the angie between Yand A
Y= Qg +0g be the angle between v and the S-E line
Sm = Oy t0y

The distances S-E and S-M are 1 | and py/pg in AUs. Thus
the components of the distance [ME] are given by

- pM -
IME |1 = 055 -—=cosdy = IMEIcos#o

Pg

IME|, = sin3- —:in&u = u.ilslsmo (34)

Pg

*Thero s an ambiguity of $180 degroes in 3. However, this does not
lﬂmh:anmt calculations, as may be seen by replacing f

uyp-p:mom (Note that Ctthen = 0~ 180 degrees.)

where © = a + s the angie between y and the M-E line,
Thus, stnce

O = (lf,j = (7[ *45"’(]('

then

where ¢ is given in terins of O using Equation (J4).
A computer program to evaluate Eqaation (33). with

Op as the independent variable, has beer: written. It is
found that

0° < 6 < 102°: no uccultation for 102°
103° < 6. < 178°: occultation for 75°
179° < 6, < 369°: no occultutiun for 190°
370° < 6 < 434°: occultation tur 64°
435° < ;. < 628°: no uccultation ‘or 193°
529° < 6 < 867°: occultation for 238°
868° < 8, < 1070°: no occultation for 202°
etc.

Combining these with the results found in Section
8.1 shows there is continuous visibility when

0°< 6, < 102° (102°)
179° € 6 < 252° (73°)
314° € 6 < 369° (55%)
435° < 6 < 506° (11°)
57° < 6 < 628° (56°)
868° < 0 < 950 82°)
1014° < 6 < 1070° (56°)
etc.

Thus there are periods of 2 or 3 months, 2 or 3 times

'pex year when continuous communication is possible

between an Earth synchronous satellite and a Mars -
synchronous satellite,
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Figure 10-11. Ecliptic plane geometry
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APPENDIX II.
SENSITIVITIES OF HYPERBOLIC AND ELLIPTIC ORBITS

1. The Hyperbolic Orbit

[he
is taken

posttion vector ot the hvperbolic probe orbit

to be
N A
p = lpeon+ 2psn

: ) \
where p = appie cosh b - 1]and 0= 14 ¢ The followmg
relations hold among the elements of the orbit.

apy SIS Or xS

— 2 -3 2 _
n = k' lay = mean motion
o = lonzitude of pericenter

true anomaly

F = hyperbolic anomaly
7§ = tme of pericenter passage
t = 7p+f{esmhF-Flin
- - I +x
F = 2unh'x = ¢ ( )
=X
(c -~ I) 1
x = | — tan f
e+ 1
& o

df  na?(c?-1)'?

Given the elements ay, e, 7. and w, the partial deriv-
atives of the rectangular coordinates and velocities can be
found with respect to the elements. Let ¢ = (e? - 1)''?,
p=ag¥?(l +ecosf)', m = ¢ sin w, L=ecosw.

9, _p 3n .
dan  an cosf + e (t-7)(m +5in 6)
-a-e-, = a s

de HCOS W

¥ _

FY P2

op, _ nay .

oy = v (m +sin 6)

5 n L 002 (o r) @+ cosd
aaH 8y 2¢ B [+e ] )

111

30,
-_ AN w
de
dp3
i |
dw

ap; nay
— = o= (Utcos0)
ary ¥

8/3. nlm + sind) .lnzuf;(( -T)eos O

—_— +

dupy AV »

2

313,
-—_— = )

de

30, nayy .
—_— = -T(Q‘fcusO) =,

ow

:’)_é_, _kcoso

ary p2

3, n 3nzu,2| (t-7)
— E . Q.'. . —_—
Bay, Zk'l( cos 0) + 37 s 0
de

aﬁz_ nuu( fsing) = g

0 " m+sin @) = p,

'i)i; _ ksin6

ary P

2. The Elliptic Orbit

Elements used for the elliptic (satellite) orbit are
ag = semimajor axis
L=

m= esinw

ecos w

7g = time of pericenter passage.

Solution of the standard Kepler equation to determine
position in the elliptic orbit and partial derivatives of the
latter with respect to the elements was available from
earlier tracking studies in terms of a library routine.
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APPENDIX 12.
HETERODYNE DETECTION OF
OPTICAL SIGNALS WITH A PHASED ARRAY

As has already been shown,!:2:3 if the collecting
aperture of a heterodyne optical receiving system exceeds
the coherence area of the signal field, then the
signal-to-noise ratio (SNR) saturates at a level determined
by this coherencr area. Rather than considering a single
large collecting area, it is then natural to consider a
phased array of smaller apertures, each with the area no
larger than the coherence area of the signal field. This is
illustrated schematically in Figure 12-1, where signal and
local oscillator are incident on N apertures. In each of
these N channels, the resultant field is photodetected and
the output current is filtered at the difference frequency.
The output of each filter consists of a signal term, si(t),
which is proportional to the product of the signal and
local oscillator fields, and a shot noise term, ny(t), whose
standard deviation is proportional to the magnitude of the
local oscillator field.* Because the shot noise is observed
in a narrow bandwidth W, it is reasonable to treat the
nj(t) as Gaussian processes. It will be assumed further
that the n;(t) arc independent processes and are
independent of the signal.

The complex envelope representation? of narrowband
signals will be employed. In this representation, n;
(evaluated at a fixed instant of timet) is a radially
symmetric complex Gaussian variate withf En; = 0 =
En2, Elnj|? = 202. The signals s,(t) are assumed to be of
the form

$i(t) = A exp [j0; (1)) 1

where the 0; are independent random variables uniformly
distributed on (0,27).

The outputs of the N channels are combined (in
manners to be discussed below) to give a resultant output
R(t). The output SNR will be defined as

V2 (E;[RP - E,RP)
=
(var,RP +varanl3)m

current ou utolthe howdeuctot wl theabove
mmg:lon?h proport&ml munltude( squared of the

ﬂlhanwaomittlnmmentofﬂunndomp o will
sbomddcﬁuﬂnnndomvadabbeomnpondiuw
instant of time.

tEdonoteuxpecmlou

where the subscript s denotes the case where signal and
noise are present, and the subscript n the case where
noise alone is present. It is generaily more common'+?»
to define SNR by the ratio of the expectation of IR}?
when signal alone is present, to the expectation of iR|2
when noise alone is present. However, in_the case of
digital communication systems where we wisk to decide
between the two hypotheses: either signa! plus noise or
noise alone is present, then the second is the more
appropriate performance criterion. Indeed, it has been
shown that the more conventional definition can in
some cases lead to grossly misleading results.

Three methods of combining will be considered: (1)
linear, (2) square law, and (3) linear with phase correction
(matched filter); and these will be compared on the basis
of the input SNR, A%/20%, required to achieve a given
SNR.

1. LINEAR COMBINING

Consider
N

R, = z A% + n) G)

i=1
In this case, it can be shown that
F,R,? = NA? + 2No?
vag IR, B = (N - N)A* + aN?A%0? +~ 4N2¢*

and the corresponding moments for the subscript n are
obtained by replacing A by zero. Therefore,

Al[24°

(SNR), =
l+£+(l —) A @
2’ "N’ 8

Note that for large N the SNR is essentially independei:
of N, Note also that, for N > 1, the output SNR also
saturates with increasing A/o, so that improvement is pot
achieved by increasing the input signal-to-noise ratio. The
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reason  tor this s that random  phase addition gives
essentially a Gaussian signal for which the average power
and the standard deviation of the average power are
proportional to one another,

Thus hmear combining affords no advantage. and
indeed can result in performance considerably poorer than
a single channel. Note that linear combining is essentially
what occurs when a collecting aperture larger than the
coherence area is employed,

2. SQUARE-LAW COMBINING

Consider
N i0
R, = z lAcJ ' n; K 1/2 (5)
in which case =1
E, IR21> = NA? + 2No’

var, | Ry 12 = 4NA?0? + 4No*

Therefore
N_A?/2¢? 6)
J1 + A?[20?

It follows from Equation (6) that to achieve a fixed
(SNR), ihe input signal-to-noise r-tio (A%/2¢%) may be
decreased proportic:.al to 1/N whan A%/26% >> 1, but
decreases proportional to 1/3/N when A2/2¢2 << 1. The
latter case is the ‘well-known incoherent integration
resuit. .

(SNR); =

3. COHERENT COMBINING

If the individual ; were known, phase correction
could be employed to obtain

N
. ; ()
R3 = Z (A + nie—’oi>

i=1
in which case
E, IR3|? = N?A? + 2No?
var | Ry | = 4N*A%¢? + aN?¢?

*Note that, from Equation (2), this cormponds 10 re that,
for a binagy error to be made, the “‘test mtimm“ by
four standard deviations from its mean.

*If there were sufficient signal-to-noise ratio in each channel, then
combining improvement would not be required,

which gives

NAZj20¢
(SN )y = /::\ﬁ_?_ (%)
Ji+ =5

2yt

Here the input signal-to-nomse ratio required 1o achieve a
fixed output (SNR); decreases as I/N, cotrespondimg to
the well-known coherent integration result.

4. DISCIUSSION

The input signal-to-noise ratio (A2%/20?) required to
achieve SNR = 4% is shown in Figure 12-2 as a function
of N for squarelaw combining |Equation (6)] and
coherent combining {Equation (8)]. Clearly, the results
are identical for N = 1. Coherent combining (matched
filter) permits a 3dB reduction in A2/20% for cach
doubling of N, whereas in the himit of large N, square-law
combinng permits only a 1.5 dR reduction. However, for
modera.2 values ¢f N the performance of square-law
combining is act niuch poorer than the optimum. For
cxample, for N = 10, there is only a 1.3 dB difference
between the two curves.

To perform the optimum coherent combining it is
necessary to know the phases 0;. However, there is
generally inadequate signal to noise to measure these
phases over the full communication bandwidth W.* If the
phase variation is, however, independent of frequency,
then it is possible o use a narrowband B(B << W)
component of the signal (e.g., a carrier or pilot as in the
STAR repeater®) to obtain the phase. The ratio of carrier
power P. to signal power Py required for this is given
approximately by

P. NB

The basis of Equation (9) is that, if coher. .t combining is
required, the signal power per channel is a factor N too
small for satisfactory detection. Thus, we require this
factor more carrier power, reduced of course by the
bandwidth ratio B/W, It is desirable to make B as small as
possible, the lower limit being determined by the
bandwidth of the phase fluctuation. Typically this will be
less than 1 KHz so that, for a 1 MHz communication
bandwidth, 100 channels could be combined utilizing; a
carrisr power of the order of 10 percent of the
communication power.
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Figure 12-2. Comparison of square law and
coherent combining
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